×

A spline quasi-interpolation based method to obtain the reset voltage in resistive RAMs in the charge-flux domain. (English) Zbl 1415.65281

Summary: Resistive RAMs (RRAMs) are the most promising devices for near future in terms of non-volatile memory applications. This new technology needs advances in all the fronts that have to be addressed prior to industrialization. One of them is connected with compact modeling, i.e., the development of analytical expressions to account for the most important physical effects that are needed to calculate the current, capacitance, transient response, etc. The device models should be accurate and this issue is achieved by implementing the correct physics in a flexible and robust mathematical architecture. We will focus on this latter problem here since we will deal with a good numerical approximation of experimental data based on spline quasi-interpolation to perform the integrals of the current and voltage as function of time. We do so to transform the usual modeling domain, consisting of a current-voltage representation, to a charge-flux domain; i.e., the time integral of the current and voltage measured variables. In this domain we introduced a new method to obtain the reset voltage of RRAMs and avoid the effects of the usual measurement noise. The main features of the mathematical technique we propose along with practical examples built upon real experimental data will be explained. The numerical stability of this new technique is of great interest for the implementation in automatic measurement environments for industrial applications.

MSC:

65R20 Numerical methods for integral equations
65D07 Numerical computation using splines
65D30 Numerical integration
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S., The missing memristor found, Nature, 453, 80-83 (2008)
[2] Waser, R.; Aono, M., Nanoionics-based resistive switching memories, Nature Mater., 6, 833-840 (2007)
[3] Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F., Recent progress in resistive random access memories: materials, switching mechanisms and performance, Mater. Sci. Eng., 24, 421 (2014)
[4] M. Suri, O. Bichler, D. Querlioz, G. Palma, CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: auditory (Cochlea) and visual (Retina) cognitive processing applications, in: International Electron Devices Meeting (IEDM), 2012, pp. 10.3.1-10.3.4.; M. Suri, O. Bichler, D. Querlioz, G. Palma, CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: auditory (Cochlea) and visual (Retina) cognitive processing applications, in: International Electron Devices Meeting (IEDM), 2012, pp. 10.3.1-10.3.4.
[5] Suri, M., Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices (2017), Springer
[6] Ielmini, D.; Waser, R., Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications (2015), Wiley-VCH
[7] von Neumann, J., The Computer and the Brain (1958), Yale University Press: Yale University Press New Haven, CT · Zbl 0085.14106
[8] González, M. B.; Rafí, J.; Beldarrain, O.; Zabala, M.; Campabadal, F., Analysis of the switching variability in Ni/HfO2-based RRAM devices, IEEE Trans. Device Mater. Reliab., 14, 769-771 (2014)
[9] Villena, M. A.; Jiménez-Molinos, F.; Roldán, J. B.; Sune, J.; Long, S.; Lian, X.; Gámiz, F.; Liu, M., An in-depth simulation study of thermal reset transitions in resistive switching memories, J. Appl. Phys., 114, 144505 (2013)
[10] Larentis, S.; Nardi, F.; Balatti, S.; Gilmer, D. C.; Ielmini, D., Resistive switching by voltage-driven ion migration in bipolar RRAM. part II: Modeling, IEEE Trans. Electron Devices, 59, 2468-2475 (2012)
[11] R. Degraeve, et al., Hourglass concept for RRAM: A dynamic and statistical device model, in: Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA, 2014.; R. Degraeve, et al., Hourglass concept for RRAM: A dynamic and statistical device model, in: Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA, 2014.
[12] Jiménez-Molinos, F.; Villena, M. A.; Roldán, J. B.; Roldán, A. M., A SPICE compact model for unipolar RRAM reset process analysis, IEEE Trans. Electron Devices, 62, 955-962 (2015)
[13] González-Cordero, G.; Jiménez-Molinos, F.; Roldán, J. B.; González, M.; Campabadal, F., An in-depth study of the physics behind resistive switching in TiN/Ti/HfO2/W structures, J. Vac. Sci. Technol., 35, 01A110 (2017)
[14] Villena, M. A.; Roldán, J. B.; Jiménez-Molinos, F.; Sune, J.; Long, S.; Miranda, E.; Liu, M., A comprehensive analysis on progressive reset transitions in RRAMs, J. Phys. D: Appl. Phys., 47, 205102 (2014)
[15] R. Picos, J.B. Roldán, M.N. Al Chawa, F. Jiménez-Molinos, M.A. Villena, E. García-Moreno, Exploring ReRAM-based memristors in the charge-flux domain, a modeling approach, in: Proceedings of International Conference on Memristive Systems, MEMRISYS2015.; R. Picos, J.B. Roldán, M.N. Al Chawa, F. Jiménez-Molinos, M.A. Villena, E. García-Moreno, Exploring ReRAM-based memristors in the charge-flux domain, a modeling approach, in: Proceedings of International Conference on Memristive Systems, MEMRISYS2015.
[16] Lee, J.; Lee, S.; Noh, T., Resistive switching phenomena: A review of statistical physics approaches, Appl. Phys. Rev., 2, 031303 (2015)
[17] González-Cordero, G.; Roldán, J. B.; Jiménez-Molinos, F.; Sune, J.; Long, S.; Liu, M., A new model for bipolar rrams based on truncated cone conductive filaments, a Verilog-A approach, Semicond. Sci. Technol., 31, 115013 (2016)
[18] Chua, L. O., Resistance switching memories are memristors, Appl. Phys. A, 102, 765-783 (2011)
[19] Shin, S.; Kim, K.; Kang, S. M., Compact models for memristors based on charge-flux constitutive relationships, Comput.-Aided Des. Integr. Circuits Syst., 29, 590-598 (2010)
[20] Villena, M. A.; González, M. B.; Jiménez-Molinos, F.; Campabadal, F.; Roldán, J. B.; Suñé, J.; Romera, E.; Miranda, E., Simulation of thermal reset transitions in resistive switching memories including quantum effects, J. Appl. Phys., 115, 214504 (2014)
[21] Schein, O.; Denk, G., Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits, J. Comput. Appl. Math., 100, 77-92 (1998) · Zbl 0928.65014
[22] Li, Y.; Yu, S.-M., A parallel adaptive finite volume method for nanoscale double-gate MOSFETs simulation, J. Comput. Appl. Math., 175, 87-99 (2005) · Zbl 1073.82627
[23] Lu, T.; Cai, W., A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials, J. Comput. Appl. Math., 220, 588-614 (2008) · Zbl 1146.65072
[24] Lakhdara, M.; Latreche, S.; Gontrand, Ch., Mathematical approach and optimisation of nanometric base thickness for a SiGeC HBT dedicated to radiofrequency applications, J. Comput. Appl. Math., 259, 925-936 (2014) · Zbl 1322.78017
[25] González, P.; Ibáñez, M. J.; Roldán, J. B.; Roldán, A. M.; Yáñez, R., An in-depth study on WENO-based techniques to improve parameter extraction procedures in MOSFET transistors, Math. Comput. Simulation, 118, 248-257 (2015) · Zbl 07313420
[26] Ibáñez, M. J.; Roldán, J. B.; Roldán, A. M.; Yáñez, R., A comprehensive characterization of the threshold voltage extraction in MOSFETs transistors based on smoothing splines, Math. Comput. Simulation, 102, 1-10 (2014) · Zbl 07312609
[27] Villena, M. A.; González, M. B.; Roldán, J. B.; Campabadal, F.; Jiménez-Molinos, F.; Gómez-Campos, F. M.; Suñé, J., An in-depth study of thermal effects in reset transitions in HfO2 based RRAMs, Solid State Electr., 111, 47-51 (2015)
[28] Long, S.; Lian, X.; Ye, T.; Cagli, C.; Perniola, L.; Miranda, E.; Liu, M.; Suñé, J., Cycle-to-cycle intrinsic RESET statistics in HfO2-based unipolar RRAM devices, IEEE Electron Device Lett., 34, 5, 623-625 (2015)
[29] Chen, C.; Chui, C. K.; Lai, M. J., Construction of real-time spline quasi-interpolation operators, Approx. Theory Appl., 4, 61-75 (1988) · Zbl 0692.41014
[30] de Boor, C., A Practical Guide To Splines (Revised Version) (2001), Springer: Springer New York · Zbl 0987.65015
[31] Schumaker, L. L., Spline Functions: Basic Theory (1973), Wiley: Wiley New York · Zbl 1123.41008
[32] de Boor, C.; Höllig, K.; Riemenschneider, S., Box Splines (1993), Springer Verlag: Springer Verlag New York · Zbl 0814.41012
[33] DeVore, R. A.; Lorentz, G. G., Constructive Approximation (1993), Springer Verlag: Springer Verlag New York · Zbl 0797.41016
[34] Bhatti, M.; Bracken, P., The calculation of integrals involving B-splines by means of recursion relations, Appl. Math. Comput., 172, 91-100 (2006) · Zbl 1088.65019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.