Barthel, Tobias; Stapleton, Nathaniel Transfer ideals and torsion in the Morava \(E\)-theory of abelian groups. (English) Zbl 07217904 J. Homotopy Relat. Struct. 15, No. 2, 369-375 (2020). MSC: 55N22 55P42 55S25 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, J. Homotopy Relat. Struct. 15, No. 2, 369--375 (2020; Zbl 07217904) Full Text: DOI
Barthel, Tobias; Schlank, Tomer M.; Stapleton, Nathaniel Chromatic homotopy theory is asymptotically algebraic. (English) Zbl 1442.55002 Invent. Math. 220, No. 3, 737-845 (2020). Reviewer: Jordan Williamson (Praha) MSC: 55N22 55P42 03C20 PDF BibTeX XML Cite \textit{T. Barthel} et al., Invent. Math. 220, No. 3, 737--845 (2020; Zbl 1442.55002) Full Text: DOI
Barthel, Tobias; Hausmann, Markus; Naumann, Niko; Nikolaus, Thomas; Noel, Justin; Stapleton, Nathaniel The Balmer spectrum of the equivariant homotopy category of a finite abelian group. (English) Zbl 1417.55016 Invent. Math. 216, No. 1, 215-240 (2019). Reviewer: Steffen Sagave (Nijmegen) MSC: 55P91 55P42 18E30 PDF BibTeX XML Cite \textit{T. Barthel} et al., Invent. Math. 216, No. 1, 215--240 (2019; Zbl 1417.55016) Full Text: DOI arXiv
Barthel, Tobias; Stapleton, Nathaniel Excellent rings in transchromatic homotopy theory. (English) Zbl 1387.55008 Homology Homotopy Appl. 20, No. 1, 209-218 (2018). Reviewer: Lennart Meier (Bonn) MSC: 55N20 13F40 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Homology Homotopy Appl. 20, No. 1, 209--218 (2018; Zbl 1387.55008) Full Text: DOI arXiv
Barthel, Tobias; Stapleton, Nathaniel Brown-Peterson cohomology from Morava \(E\)-theory. (English) Zbl 1373.55002 Compos. Math. 153, No. 4, 780-819 (2017). Reviewer: Rui Miguel Saramago (Porto Salvo) MSC: 55N20 55N22 55R40 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Compos. Math. 153, No. 4, 780--819 (2017; Zbl 1373.55002) Full Text: DOI arXiv
Barthel, Tobias; Stapleton, Nathaniel The character of the total power operation. (English) Zbl 1360.55004 Geom. Topol. 21, No. 1, 385-440 (2017). Reviewer: Do Ngoc Diep (Hanoi) MSC: 55N22 55S25 55P42 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Geom. Topol. 21, No. 1, 385--440 (2017; Zbl 1360.55004) Full Text: DOI arXiv
Barthel, Tobias; Stapleton, Nathaniel Centralizers in good groups are good. (English) Zbl 1365.55001 Algebr. Geom. Topol. 16, No. 3, 1453-1472 (2016). Reviewer: Donald M. Larson (Altoona) MSC: 55N20 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Algebr. Geom. Topol. 16, No. 3, 1453--1472 (2016; Zbl 1365.55001) Full Text: DOI arXiv