Barthel, Tobias; Greenlees, J. P. C.; Hausmann, Markus On the Balmer spectrum for compact Lie groups. (English) Zbl 1431.55012 Compos. Math. 156, No. 1, 39-76 (2020). Reviewer: Steffen Sagave (Nijmegen) MSC: 55P91 55P42 18G80 PDF BibTeX XML Cite \textit{T. Barthel} et al., Compos. Math. 156, No. 1, 39--76 (2020; Zbl 1431.55012) Full Text: DOI arXiv
Barthel, Tobias; Hausmann, Markus; Naumann, Niko; Nikolaus, Thomas; Noel, Justin; Stapleton, Nathaniel The Balmer spectrum of the equivariant homotopy category of a finite abelian group. (English) Zbl 1417.55016 Invent. Math. 216, No. 1, 215-240 (2019). Reviewer: Steffen Sagave (Nijmegen) MSC: 55P91 55P42 18E30 PDF BibTeX XML Cite \textit{T. Barthel} et al., Invent. Math. 216, No. 1, 215--240 (2019; Zbl 1417.55016) Full Text: DOI arXiv
Barthel, Tobias (ed.); Krause, Henning (ed.); Stojanoska, Vesna (ed.) Mini-workshop: Chromatic phenomena and duality in homotopy theory and representation theory. Abstracts from the mini-workshop held March 4–10, 2018. (English) Zbl 1409.00065 Oberwolfach Rep. 15, No. 1, 507-529 (2018). MSC: 00B05 00B25 55-06 18-06 55U35 18Exx 55Pxx 14F42 16D90 20C20 PDF BibTeX XML Cite \textit{T. Barthel} (ed.) et al., Oberwolfach Rep. 15, No. 1, 507--529 (2018; Zbl 1409.00065) Full Text: DOI
Antieau, Benjamin; Barthel, Tobias; Gepner, David On localization sequences in the algebraic \(K\)-theory of ring spectra. (English) Zbl 06852551 J. Eur. Math. Soc. (JEMS) 20, No. 2, 459-487 (2018). MSC: 19D55 55P43 16E40 18E30 19D10 PDF BibTeX XML Cite \textit{B. Antieau} et al., J. Eur. Math. Soc. (JEMS) 20, No. 2, 459--487 (2018; Zbl 06852551) Full Text: DOI arXiv
Barthel, Tobias Auslander-Reiten sequences, Brown-Comenetz duality, and the \(K(n)\)-local generating hypothesis. (English) Zbl 1380.55008 Algebr. Represent. Theory 20, No. 3, 569-581 (2017). Reviewer: Steffen Sagave (Nijmegen) MSC: 55P42 16G70 18E30 55U35 PDF BibTeX XML Cite \textit{T. Barthel}, Algebr. Represent. Theory 20, No. 3, 569--581 (2017; Zbl 1380.55008) Full Text: DOI arXiv
Barthel, Tobias; May, J. P.; Riehl, Emily Six model structures for DG-modules over DGAs: model category theory in homological action. (English) Zbl 1342.16006 New York J. Math. 20, 1077-1159 (2014). MSC: 16E45 18G25 18G55 55S30 55T20 55U35 PDF BibTeX XML Cite \textit{T. Barthel} et al., New York J. Math. 20, 1077--1159 (2014; Zbl 1342.16006) Full Text: EMIS arXiv
Barthel, Tobias; Riehl, Emily On the construction of functorial factorizations for model categories. (English) Zbl 1268.18001 Algebr. Geom. Topol. 13, No. 2, 1089-1124 (2013). Reviewer: Luke Wolcott (Rhinebeck) MSC: 18A32 18G55 55U35 55U40 18D20 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{E. Riehl}, Algebr. Geom. Topol. 13, No. 2, 1089--1124 (2013; Zbl 1268.18001) Full Text: DOI arXiv