Barthel, Tobias; Castellana, Natàlia; Heard, Drew; Valenzuela, Gabriel Local Gorenstein duality for cochains on spaces. (English) Zbl 07241702 J. Pure Appl. Algebra 225, No. 2, Article ID 106495, 23 p. (2021). Reviewer: Niles Johnson (Newark) MSC: 55U30 55R35 13H10 13D45 PDF BibTeX XML Cite \textit{T. Barthel} et al., J. Pure Appl. Algebra 225, No. 2, Article ID 106495, 23 p. (2021; Zbl 07241702) Full Text: DOI
Barthel, Tobias A short introduction to the telescope and chromatic splitting conjectures. (English) Zbl 07261949 Ohsawa, Takeo (ed.) et al., Bousfield classes and Ohkawa’s theorem. Selected contributions given at the workshop, Nagoya, Japan, August 28–30, 2015. Singapore: Springer (ISBN 978-981-15-1587-3/hbk; 978-981-15-1588-0/ebook). Springer Proceedings in Mathematics & Statistics 309, 261-273 (2020). MSC: 55P42 55-02 PDF BibTeX XML Cite \textit{T. Barthel}, in: Bousfield classes and Ohkawa's theorem. Selected contributions given at the workshop, Nagoya, Japan, August 28--30, 2015. Singapore: Springer. 261--273 (2020; Zbl 07261949) Full Text: DOI
Barthel, Tobias; Stapleton, Nathaniel Transfer ideals and torsion in the Morava \(E\)-theory of abelian groups. (English) Zbl 07217904 J. Homotopy Relat. Struct. 15, No. 2, 369-375 (2020). MSC: 55N22 55P42 55S25 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, J. Homotopy Relat. Struct. 15, No. 2, 369--375 (2020; Zbl 07217904) Full Text: DOI
Barthel, Tobias; Schlank, Tomer M.; Stapleton, Nathaniel Chromatic homotopy theory is asymptotically algebraic. (English) Zbl 1442.55002 Invent. Math. 220, No. 3, 737-845 (2020). Reviewer: Jordan Williamson (Praha) MSC: 55N22 55P42 03C20 PDF BibTeX XML Cite \textit{T. Barthel} et al., Invent. Math. 220, No. 3, 737--845 (2020; Zbl 1442.55002) Full Text: DOI
Barthel, Tobias; Heard, Drew; Valenzuela, Gabriel Derived completion for comodules. (English) Zbl 1436.55018 Manuscr. Math. 161, No. 3-4, 409-438 (2020). Reviewer: Geoffrey Powell (Angers) MSC: 55P60 13D45 14B15 55U35 PDF BibTeX XML Cite \textit{T. Barthel} et al., Manuscr. Math. 161, No. 3--4, 409--438 (2020; Zbl 1436.55018) Full Text: DOI
Barthel, Tobias; Greenlees, J. P. C.; Hausmann, Markus On the Balmer spectrum for compact Lie groups. (English) Zbl 1431.55012 Compos. Math. 156, No. 1, 39-76 (2020). Reviewer: Steffen Sagave (Nijmegen) MSC: 55P91 55P42 18G80 PDF BibTeX XML Cite \textit{T. Barthel} et al., Compos. Math. 156, No. 1, 39--76 (2020; Zbl 1431.55012) Full Text: DOI arXiv
Barthel, Tobias; Castellana, Natàlia; Heard, Drew; Valenzuela, Gabriel Stratification and duality for homotopical groups. (English) Zbl 1426.55017 Adv. Math. 354, Article ID 106733, 61 p. (2019). Reviewer: Daniel Juan Pineda (Michoacan) MSC: 55R35 20J05 13D45 55P42 PDF BibTeX XML Cite \textit{T. Barthel} et al., Adv. Math. 354, Article ID 106733, 61 p. (2019; Zbl 1426.55017) Full Text: DOI arXiv
Barthel, Tobias; Beaudry, Agnès; Stojanoska, Vesna Gross-Hopkins duals of higher real K-theory spectra. (English) Zbl 1426.55001 Trans. Am. Math. Soc. 372, No. 5, 3347-3368 (2019). Reviewer: Constanze Roitzheim (Canterbury) MSC: 55M05 55P42 20J06 55Q91 55Q51 55P60 PDF BibTeX XML Cite \textit{T. Barthel} et al., Trans. Am. Math. Soc. 372, No. 5, 3347--3368 (2019; Zbl 1426.55001) Full Text: DOI arXiv
Antolín-Camarena, Omar; Barthel, Tobias A simple universal property of Thom ring spectra. (English) Zbl 1417.55007 J. Topol. 12, No. 1, 56-78 (2019). Reviewer: Geoffrey Powell (Angers) MSC: 55N20 55P42 55P43 55P48 PDF BibTeX XML Cite \textit{O. Antolín-Camarena} and \textit{T. Barthel}, J. Topol. 12, No. 1, 56--78 (2019; Zbl 1417.55007) Full Text: DOI
Barthel, Tobias; Hausmann, Markus; Naumann, Niko; Nikolaus, Thomas; Noel, Justin; Stapleton, Nathaniel The Balmer spectrum of the equivariant homotopy category of a finite abelian group. (English) Zbl 1417.55016 Invent. Math. 216, No. 1, 215-240 (2019). Reviewer: Steffen Sagave (Nijmegen) MSC: 55P91 55P42 18E30 PDF BibTeX XML Cite \textit{T. Barthel} et al., Invent. Math. 216, No. 1, 215--240 (2019; Zbl 1417.55016) Full Text: DOI arXiv
Barthel, Tobias; Bousfield, A. K. On the comparison of stable and unstable \(p\)-completion. (English) Zbl 1410.55005 Proc. Am. Math. Soc. 147, No. 2, 897-908 (2019). Reviewer: Markus Szymik (Trondheim) MSC: 55P60 55P42 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{A. K. Bousfield}, Proc. Am. Math. Soc. 147, No. 2, 897--908 (2019; Zbl 1410.55005) Full Text: DOI arXiv
Barthel, Tobias (ed.); Krause, Henning (ed.); Stojanoska, Vesna (ed.) Mini-workshop: Chromatic phenomena and duality in homotopy theory and representation theory. Abstracts from the mini-workshop held March 4–10, 2018. (English) Zbl 1409.00065 Oberwolfach Rep. 15, No. 1, 507-529 (2018). MSC: 00B05 00B25 55-06 18-06 55U35 18Exx 55Pxx 14F42 16D90 20C20 PDF BibTeX XML Cite \textit{T. Barthel} (ed.) et al., Oberwolfach Rep. 15, No. 1, 507--529 (2018; Zbl 1409.00065) Full Text: DOI
Barthel, Tobias; Heard, Drew Algebraic chromatic homotopy theory for \(BP_\ast BP\)-comodules. (English) Zbl 1412.55005 Proc. Lond. Math. Soc. (3) 117, No. 6, 1135-1180 (2018). Reviewer: Lennart Meier (Bonn) MSC: 55N22 55U35 55P60 14D23 14F42 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{D. Heard}, Proc. Lond. Math. Soc. (3) 117, No. 6, 1135--1180 (2018; Zbl 1412.55005) Full Text: DOI
Barthel, Tobias; Heard, Drew; Valenzuela, Gabriel The algebraic chromatic splitting conjecture for Noetherian ring spectra. (English) Zbl 06954712 Math. Z. 290, No. 3-4, 1359-1375 (2018). MSC: 55P PDF BibTeX XML Cite \textit{T. Barthel} et al., Math. Z. 290, No. 3--4, 1359--1375 (2018; Zbl 06954712) Full Text: DOI
Barthel, Tobias; Heard, Drew; Valenzuela, Gabriel Local duality in algebra and topology. (English) Zbl 1403.55008 Adv. Math. 335, 563-663 (2018). Reviewer: David Barnes (Belfast) MSC: 55P60 13D45 14B15 55U35 55U30 PDF BibTeX XML Cite \textit{T. Barthel} et al., Adv. Math. 335, 563--663 (2018; Zbl 1403.55008) Full Text: DOI
Barthel, Tobias; Stapleton, Nathaniel Excellent rings in transchromatic homotopy theory. (English) Zbl 1387.55008 Homology Homotopy Appl. 20, No. 1, 209-218 (2018). Reviewer: Lennart Meier (Bonn) MSC: 55N20 13F40 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Homology Homotopy Appl. 20, No. 1, 209--218 (2018; Zbl 1387.55008) Full Text: DOI arXiv
Antieau, Benjamin; Barthel, Tobias; Gepner, David On localization sequences in the algebraic \(K\)-theory of ring spectra. (English) Zbl 06852551 J. Eur. Math. Soc. (JEMS) 20, No. 2, 459-487 (2018). MSC: 19D55 55P43 16E40 18E30 19D10 PDF BibTeX XML Cite \textit{B. Antieau} et al., J. Eur. Math. Soc. (JEMS) 20, No. 2, 459--487 (2018; Zbl 06852551) Full Text: DOI arXiv
Barthel, Tobias; Heard, Drew; Valenzuela, Gabriel Local duality for structured ring spectra. (English) Zbl 1384.55008 J. Pure Appl. Algebra 222, No. 2, 433-463 (2018). Reviewer: Steffen Sagave (Nijmegen) MSC: 55P43 14B15 13D45 PDF BibTeX XML Cite \textit{T. Barthel} et al., J. Pure Appl. Algebra 222, No. 2, 433--463 (2018; Zbl 1384.55008) Full Text: DOI
Barthel, Tobias Auslander-Reiten sequences, Brown-Comenetz duality, and the \(K(n)\)-local generating hypothesis. (English) Zbl 1380.55008 Algebr. Represent. Theory 20, No. 3, 569-581 (2017). Reviewer: Steffen Sagave (Nijmegen) MSC: 55P42 16G70 18E30 55U35 PDF BibTeX XML Cite \textit{T. Barthel}, Algebr. Represent. Theory 20, No. 3, 569--581 (2017; Zbl 1380.55008) Full Text: DOI arXiv
Barthel, Tobias; Stapleton, Nathaniel Brown-Peterson cohomology from Morava \(E\)-theory. (English) Zbl 1373.55002 Compos. Math. 153, No. 4, 780-819 (2017). Reviewer: Rui Miguel Saramago (Porto Salvo) MSC: 55N20 55N22 55R40 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Compos. Math. 153, No. 4, 780--819 (2017; Zbl 1373.55002) Full Text: DOI arXiv
Barthel, Tobias; Stapleton, Nathaniel The character of the total power operation. (English) Zbl 1360.55004 Geom. Topol. 21, No. 1, 385-440 (2017). Reviewer: Do Ngoc Diep (Hanoi) MSC: 55N22 55S25 55P42 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Geom. Topol. 21, No. 1, 385--440 (2017; Zbl 1360.55004) Full Text: DOI arXiv
Barthel, Tobias; Stapleton, Nathaniel Centralizers in good groups are good. (English) Zbl 1365.55001 Algebr. Geom. Topol. 16, No. 3, 1453-1472 (2016). Reviewer: Donald M. Larson (Altoona) MSC: 55N20 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{N. Stapleton}, Algebr. Geom. Topol. 16, No. 3, 1453--1472 (2016; Zbl 1365.55001) Full Text: DOI arXiv
Barthel, Tobias; Heard, Drew The \(E_{2}\)-term of the \(K(n)\)-local \(E_{n}\)-Adams spectral sequence. (English) Zbl 1348.55008 Topology Appl. 206, 190-214 (2016). Reviewer: Lennart Meier (Bonn) MSC: 55P60 55Q10 13J10 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{D. Heard}, Topology Appl. 206, 190--214 (2016; Zbl 1348.55008) Full Text: DOI arXiv
Barthel, Tobias Chromatic completion. (English) Zbl 1402.55005 Proc. Am. Math. Soc. 144, No. 5, 2263-2274 (2016). Reviewer: Gabriel Eduardo Valenzuela Vasquez (Columbus) MSC: 55P42 55P60 PDF BibTeX XML Cite \textit{T. Barthel}, Proc. Am. Math. Soc. 144, No. 5, 2263--2274 (2016; Zbl 1402.55005) Full Text: DOI arXiv
Barthel, Tobias; Frankland, Martin Completed power operations for Morava \(E\)-theory. (English) Zbl 1326.55018 Algebr. Geom. Topol. 15, No. 4, 2065-2131 (2015). Reviewer: Haruo Minami (Nara) MSC: 55S25 55S12 13B35 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{M. Frankland}, Algebr. Geom. Topol. 15, No. 4, 2065--2131 (2015; Zbl 1326.55018) Full Text: DOI arXiv
Barthel, Tobias; May, J. P.; Riehl, Emily Six model structures for DG-modules over DGAs: model category theory in homological action. (English) Zbl 1342.16006 New York J. Math. 20, 1077-1159 (2014). MSC: 16E45 18G25 18G55 55S30 55T20 55U35 PDF BibTeX XML Cite \textit{T. Barthel} et al., New York J. Math. 20, 1077--1159 (2014; Zbl 1342.16006) Full Text: EMIS arXiv
Barthel, Tobias; Riehl, Emily On the construction of functorial factorizations for model categories. (English) Zbl 1268.18001 Algebr. Geom. Topol. 13, No. 2, 1089-1124 (2013). Reviewer: Luke Wolcott (Rhinebeck) MSC: 18A32 18G55 55U35 55U40 18D20 PDF BibTeX XML Cite \textit{T. Barthel} and \textit{E. Riehl}, Algebr. Geom. Topol. 13, No. 2, 1089--1124 (2013; Zbl 1268.18001) Full Text: DOI arXiv