×

zbMATH — the first resource for mathematics

The algebraic chromatic splitting conjecture for Noetherian ring spectra. (English) Zbl 06954712
Summary: We formulate a version of Hopkins’ chromatic splitting conjecture for an arbitrary structured ring spectrum \(R\), and prove it whenever \(\pi_*R\) is Noetherian. As an application, these results provide a new local-to-global principle in the modular representation theory of finite groups.

MSC:
55P Homotopy theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, Boston (1969) · Zbl 0175.03601
[2] Barthel, T., Heard, D., Valenzuela, G.: Local duality in algebra and topology. arXiv preprint arxiv:1511.03526, (November 2015) · Zbl 1403.55008
[3] Barthel, T.; Heard, D.; Valenzuela, G., Local duality for structured ring spectra, J. Pure Appl. Algebra, 222, 433-463, (2018) · Zbl 1384.55008
[4] Barthel, Tobias; Stapleton, Nathaniel, Centralizers in good groups are good, Algebr. Geom. Topol., 16, 1453-1472, (2016) · Zbl 1365.55001
[5] Beaudry, Agnès, The chromatic splitting conjecture at \(n = p = 2\), Geom. Topol., 21, 3213-3230, (2017) · Zbl 1421.55010
[6] Benson, Dave; Iyengar, Srikanth B.; Krause, Henning, Local cohomology and support for triangulated categories, Ann. Sci. Éc. Norm. Supér. (4), 41, 573-619, (2008) · Zbl 1171.18007
[7] Benson, Dave; Iyengar, Srikanth B.; Krause, Henning, Stratifying triangulated categories, J. Topol., 4, 641-666, (2011) · Zbl 1239.18013
[8] Benson, David; Greenlees, John, Stratifying the derived category of cochains on \(BG\) for \(G\) a compact Lie group, J. Pure Appl. Algebra, 218, 642-650, (2014) · Zbl 1291.18014
[9] Benson, David J.: Iyengar, Srikanth, Krause, Henning: Representations of finite groups: local cohomology and support. volme 43 of Oberwolfach Seminars. Birkhäuser/Springer Basel AG, Basel (2012) · Zbl 1246.20002
[10] Benson, David J.; Iyengar, Srikanth B.; Krause, Henning, Stratifying modular representations of finite groups, Ann. of Math. (2), 174, 1643-1684, (2011) · Zbl 1261.20057
[11] Benson, David John; Krause, Henning, Complexes of injective \(kG\)-modules, Algebra Number Theory, 2, 1-30, (2008) · Zbl 1167.20006
[12] Carlson, Jon F.; Chebolu, Sunil K.; Mináč, Ján, Freyd’s generating hypothesis with almost split sequences, Proc. Amer. Math. Soc., 137, 2575-2580, (2009) · Zbl 1188.20006
[13] Dell’Ambrogio, Ivo; Stanley, Donald, Affine weakly regular tensor triangulated categories, Pacific J. Math., 285, 93-109, (2016) · Zbl 1360.18021
[14] Devinatz, Ethan S., A counterexample to a BP-analogue of the chromatic splitting conjecture, Proc. Amer. Math. Soc., 126, 907-911, (1998) · Zbl 0898.55005
[15] Devinatz, Ethan S.; Hopkins, Michael J.; Smith, Jeffrey H., Nilpotence and stable homotopy theory. I, Ann. of Math. (2), 128, 207-241, (1988) · Zbl 0673.55008
[16] Evens, Leonard, The cohomology ring of a finite group, Trans. Amer. Math. Soc., 101, 224-239, (1961) · Zbl 0104.25101
[17] Goerss, P.G., Hopkins, M.J.: Moduli spaces of commutative ring spectra. In: Structured ring spectra, volume 315 of London Math. Soc. Lecture Note Ser., pp. 151-200 Cambridge Univ. Press, Cambridge (2004) · Zbl 1086.55006
[18] Greenlees, J.P.C.: Homotopy Invariant Commutative Algebra over fields. arXiv preprint arxiv:1601.02473, (January 2016) · Zbl 1399.13016
[19] Greenlees, JPC; May, JP, Derived functors of \(I\)-adic completion and local homology, J. Algebra, 149, 438-453, (1992) · Zbl 0774.18007
[20] Hopkins, Michael J.: Global methods in homotopy theory. In: Homotopy theory (Durham, 1985), volume 117 of London Math. Soc. Lecture Note Ser., pp. 73-96. Cambridge Univ. Press, Cambridge (1987)
[21] Hopkins, Michael J.; Smith, Jeffrey H., Nilpotence and stable homotopy theory. II, Ann. of Math. (2), 148, 1-49, (1998) · Zbl 0924.55010
[22] Hovey, Mark: Bousfield localization functors and Hopkins’ chromatic splitting conjecture. In: The Čech centennial (Boston, MA, 1993), volume 181 of Contemp. Math., pp. 225-250. Amer. Math. Soc., Providence, RI (1995) · Zbl 0830.55004
[23] Hovey, Mark; Lockridge, Keir; Puninski, Gena, The generating hypothesis in the derived category of a ring, Math. Z., 256, 789-800, (2007) · Zbl 1137.16016
[24] Hovey, Mark; Palmieri, John H.; Strickland, Neil P., Axiomatic stable homotopy theory, Mem. Amer. Math. Soc, 128, x+114, (1997) · Zbl 0881.55001
[25] Hovey, Mark A.; Strickland, Neil P., Morava \({K}\)-theories and localisation, Mem. Am. Math. Soc, 139, viii+100-100, (1999) · Zbl 0929.55010
[26] Lurie, J.: Higher topos theory, volume 170 of annals of mathematics studies. Princeton University Press, Princeton (2009)
[27] Lurie, J.: Higher Algebra (2017). Draft available from author’s website as. http://www.math.harvard.edu/ lurie/papers/HA.pdf. Accessed Sept 2017
[28] Margolis, H.R.: Spectra and the Steenrod algebra, volume 29 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, Modules over the Steenrod algebra and the stable homotopy category (1983)
[29] Neeman, Amnon, The chromatic tower for \(D(R)\), Topology, 31, 519-532, (1992) · Zbl 0793.18008
[30] Ravenel, Douglas C., Localization with respect to certain periodic homology theories, Amer. J. Math., 106, 351-414, (1984) · Zbl 0586.55003
[31] Venkov, BB, Cohomology algebras for some classifying spaces, Dokl. Akad. Nauk SSSR, 127, 943-944, (1959) · Zbl 0099.38802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.