zbMATH — the first resource for mathematics

Auslander-Reiten sequences, Brown-Comenetz duality, and the \(K(n)\)-local generating hypothesis. (English) Zbl 1380.55008
Freyd’s generating hypothesis is a prominent open problem in stable homotopy theory. It asks whether a map between finite spectra is null-homotopic if it induces the zero map on homotopy groups. An analogous question can be asked in more general triangulated categories, and it has for example been explored under which conditions the generating hypothesis holds in the derived category of a commutative ring [K. H. Lockridge, J. Pure Appl. Algebra 208, No. 2, 485–495 (2007; Zbl 1112.55011)] or in the stable module category of a finite group [J. F. Carlson et al., Proc. Am. Math. Soc. 137, No. 8, 2575–2580 (2009; Zbl 1188.20006)].
One main result of the paper under review is that the statement of the generating hypothesis does not hold in the \(K(n)\)-localization of the stable homotopy category as soon as \(n > 0\). Here \(K(n)\) is the Morava \(K\)-theory spectrum of height \(n\) at a prime \(p\). The \(K(n)\)-localizations are important because they provide the layers in the chromatic filtration of the stable homotopy category.
The strategy of the paper is to employ the notion of Auslander-Reiten sequences in compactly generated triangulated categories that has for example been studied by H. Krause [\(K\)-Theory 20, No. 4, 331–344 (2000; Zbl 0970.18012)]. The author shows that the simultaneous presence of Auslander-Reiten sequences and of indecomposables which are not a sum of shifted copies of the generator violates the generating hypothesis. This criterion is then verified for the \(K(n)\)-localization of the stable homotopy category when \(n > 0\). The Auslander-Reiten sequences for this category determine an Auslander-Reiten translation functor \(T\), and it is shown that \(T\) is the dual of the Brown-Comenetz duality functor.

55P42 Stable homotopy theory, spectra
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
18E30 Derived categories, triangulated categories (MSC2010)
55U35 Abstract and axiomatic homotopy theory in algebraic topology
Full Text: DOI arXiv
[1] Ando, M, Isogenies of formal group laws and power operations in the cohomology theories en, Duke Math. J., 79, 423-485, (1995) · Zbl 0862.55004
[2] Beligiannis, A, Auslander-Reiten triangles, ziegler spectra and Gorenstein rings, K-Theory, 32, 1-82, (2004) · Zbl 1082.18010
[3] Benson, DJ; Chebolu, SK; Christensen, JD; Mináč, J, The generating hypothesis for the stable module category of a p-group, J. Algebra, 310, 428-433, (2007) · Zbl 1120.20002
[4] Bohmann, AM; May, JP, A presheaf interpretation of the generalized freyd conjecture, Theory Appl. Categ., 26, 403-411, (2012) · Zbl 1252.18025
[5] Carlson, JF; Chebolu, SK; Mináč, J, Freyd’s generating hypothesis with almost split sequences, Proc. Amer. Math. Soc., 137, 2575-2580, (2009) · Zbl 1188.20006
[6] Devinatz, ES, K-theory and the generating hypothesis, Amer. J. Math., 112, 787-804, (1990) · Zbl 0783.55008
[7] Devinatz, ES, The generating hypothesis revisited, 73-92, (1998), RI · Zbl 0899.55008
[8] Freyd, P, Stable homotopy, (1966), New York · Zbl 0195.52901
[9] Hopkins, M.J., Gross, B.H.: Equivariant vector bundles on the Lubin-Tate moduli space. In: Topology and representation theory (Evanston, IL, 1992), Contemp. Math., vol. 158, pp. 23-88. Amer. Math. Soc., Providence, RI. doi:10.1090/conm/158/01453 (1994)
[10] Hopkins, MJ; Gross, BH, The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. (N.S.), 30, 76-86, (1994) · Zbl 0857.55003
[11] Hovey, M, On freyd’s generating hypothesis, Q. J. Math., 58, 31-45, (2007) · Zbl 1173.55007
[12] Hovey, M; Lockridge, K; Puninski, G, The generating hypothesis in the derived category of a ring, Math. Z, 256, 789-800, (2007) · Zbl 1137.16016
[13] Hovey, M; Palmieri, JH; Strickland, NP, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc., 128, x+114, (1997) · Zbl 0881.55001
[14] Hovey, MA; Strickland, NP, Morava K-theories and localisation, Mem. Am. Math. Soc., 139, viii+100-100, (1999) · Zbl 0929.55010
[15] Jørgensen, P, Auslander-Reiten sequences on schemes, Ark. Mat., 44, 97-103, (2006) · Zbl 1169.14010
[16] Krause, H, Auslander-Reiten theory via Brown representability, K-Theory, 20, 331-344, (2000) · Zbl 0970.18012
[17] Krause, H, Auslander-Reiten triangles and a theorem of Zimmermann, Bull. London Math. Soc., 37, 361-372, (2005) · Zbl 1070.18006
[18] Lockridge, KH, The generating hypothesis in the derived category of R-modules, J. Pure Appl. Algebra, 208, 485-495, (2007) · Zbl 1112.55011
[19] Mahowald, M., Ravenel, D., Shick, P.: The triple loop space approach to the telescope conjecture. In: Homotopy methods in algebraic topology (Boulder, CO, 1999), Contemp. Math., vol. 271, pp. 217-284. Amer. Math. Soc., Providence, RI. doi:10.1090/conm/271/04358 (2001) · Zbl 1082.18010
[20] West, J.R.: Higher Auslander-Reiten Theory. ProQuest LLC, Ann Arbor, MI. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3702411, Thesis (Ph.D.)-University of California, Riverside (2015) · Zbl 0862.55004
[21] Westerland, C.: A higher chromatic analogue of the image of J. arXiv:1210.2472 (2015) · Zbl 1371.19003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.