×

Theoretical Hill-type muscle and stability: numerical model and application. (English) Zbl 1307.92133

Summary: The construction of artificial muscles is one of the most challenging developments in today’s biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator.

MSC:

92C50 Medical applications (general)
Full Text: DOI

References:

[1] Progress in Biophysics and Biophysical Chemistry 7 pp 255– (1957)
[2] Philosophical Transactions of the Royal Society B 355 (1396) pp 433– (2000) · doi:10.1098/rstb.2000.0584
[3] DOI: 10.1111/j.1432-1033.2004.04044.x · doi:10.1111/j.1432-1033.2004.04044.x
[4] Nature 374 (6522) pp 553– (1995) · doi:10.1038/374553a0
[5] DOI: 10.1098/rstb.2004.1557 · doi:10.1098/rstb.2004.1557
[6] Biophysical Journal 68 (5) pp 1966– (1995) · doi:10.1016/S0006-3495(95)80374-7
[7] DOI: 10.1038/nature02380 · doi:10.1038/nature02380
[8] Advances in Experimental Medicine and Biology 538 pp 481– (2004)
[9] DOI: 10.1098/rstb.2001.1028 · doi:10.1098/rstb.2001.1028
[10] DOI: 10.1126/science.1099010 · doi:10.1126/science.1099010
[11] DOI: 10.1016/j.jtbi.2009.12.027 · doi:10.1016/j.jtbi.2009.12.027
[12] DOI: 10.1016/S1672-6529(11)60115-7 · doi:10.1016/S1672-6529(11)60115-7
[13] Applied Bionics and Biomechanics pp 1– (2012)
[14] Bioinspiration & Biomimetics 7 (2012)
[15] Proceedings of the Royal Society of London. Series B 126 pp 136– (1938) · doi:10.1098/rspb.1938.0050
[16] DOI: 10.1007/s00422-007-0160-6 · Zbl 1125.92007 · doi:10.1007/s00422-007-0160-6
[17] Journal of Biomechanics 29 pp 1091– (1996) · doi:10.1016/0021-9290(96)00005-X
[18] DOI: 10.1177/027836402320556331 · doi:10.1177/027836402320556331
[19] Biological Cybernetics 75 (5) pp 409– (1996) · Zbl 0862.92011 · doi:10.1007/s004220050306
[20] DOI: 10.1007/s00422-003-0414-x · Zbl 1084.92004 · doi:10.1007/s00422-003-0414-x
[21] DOI: 10.1126/science.1146351 · doi:10.1126/science.1146351
[22] DOI: 10.1016/j.robot.2011.06.006 · doi:10.1016/j.robot.2011.06.006
[23] Proceedings of the Royal Society of London. Series B 183 (1070) pp 83– (1973) · doi:10.1098/rspb.1973.0006
[24] Behavioral and Brain Sciences 15 pp 603– (1992) · doi:10.1017/S0140525X00072538
[25] Biophysics 11 (3) pp 565– (1966) · Zbl 0148.35101
[26] DOI: 10.1177/02783640122067309 · doi:10.1177/02783640122067309
[27] DOI: 10.1109/TNSRE.2009.2039620 · doi:10.1109/TNSRE.2009.2039620
[28] DOI: 10.1243/09544119JEIM547 · doi:10.1243/09544119JEIM547
[29] DOI: 10.1007/s00422-006-0120-6 · Zbl 1161.92307 · doi:10.1007/s00422-006-0120-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.