×

Linear time-periodic dynamical systems: an \(H_2\) analysis and a model reduction framework. (English) Zbl 1485.93098

Summary: Linear time-periodic (LTP) dynamical systems frequently appear in the modelling of phenomena related to fluid dynamics, electronic circuits and structural mechanics via linearization centred around known periodic orbits of nonlinear models. Such LTP systems can reach orders that make repeated simulation or other necessary analysis prohibitive, motivating the need for model reduction. We develop here an algorithmic framework for constructing reduced models that retains the LTP structure of the original LTP system. Our approach generalizes optimal approaches that have been established previously for linear time-invariant (LTI) model reduction problems. We employ an extension of the usual \(H_2\) Hardy space defined for the LTI setting to time-periodic systems and within this broader framework develop an a posteriori error bound expressible in terms of related LTI systems. Optimization of this bound motivates our algorithm. We illustrate the success of our method on three numerical examples.

MSC:

93B11 System structure simplification
93C05 Linear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Gugercin, S.; Antoulas, A. C.; Beattie, C., H_2 model reduction for large-scale linear dynamical systems, SIAM j. matrix anal. appl., 30, 609-638 (2008) · Zbl 1159.93318 · doi:10.1137/060666123
[2] Antoulas, A. C., Approximation of Large-Scale Dynamical Systems, 6 (2005), Society for Industrial and Applied Mathematics · Zbl 1112.93002
[3] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 483-531 (2015) · Zbl 1339.37089 · doi:10.1137/130932715
[4] Antoulas, A. C.; Sorensen, D. C.; Gugercin, S., A survey of model reduction methods for large-scale systems, Contemp. Math., 280, 193-220 (2001) · Zbl 1048.93014
[5] Sandberg, H.; Rantzer, A., Balanced truncation of linear time-varying systems, IEEE Trans. Autom. Control, 49, 217-229 (2004) · Zbl 1365.93062 · doi:10.1109/TAC.2003.822862
[6] Sandberg, H., A case study in model reduction of linear time-varying systems, Automatica, 42, 467-472 (2006) · Zbl 1121.93331 · doi:10.1016/j.automatica.2005.10.016
[7] Lang, N.; Saak, J.; Stykel, T., Balanced truncation model reduction for linear time-varying systems, Math. Comput. Model Dyn. Syst., 22, 267-281 (2016) · Zbl 1417.93089 · doi:10.1080/13873954.2016.1198386
[8] Varga, A., Balancing related methods for minimal realization of periodic systems, Syst. Control. Lett., 36, 339-349 (1999) · Zbl 0915.93021 · doi:10.1016/S0167-6911(98)00107-8
[9] Varga, A., Balanced truncation model reduction of periodic systems, 3, 2379-2384 (2000)
[10] Farhood, M.; Beck, C. L.; Dullerud, G. E., Model reduction of periodic systems: a lifting approach, Automatica, 41, 1085-1090 (2005) · Zbl 1091.93003 · doi:10.1016/j.automatica.2005.01.008
[11] Chahlaoui, Y.; Van Dooren, P.; Benner, P.; Sorensen, D. C.; Mehrmann, V., Dimension Reduction of Large-Scale Systems, Model reduction of time-varying systems, 131-148 (2005), Berlin, Heidelberg, Springer
[12] Benner, P.; Hossain, M. S.; Stykel, T., Low-rank iterative methods for periodic projected Lyapunov equations and their application in model reduction of periodic descriptor systems, Numer. Algorithms, 67, 669-690 (2014) · Zbl 1305.65158 · doi:10.1007/s11075-013-9816-6
[13] Wereley, N. M.; Hall, S. R., Linear time periodic systems: transfer function, poles, transmission zeroes and directional properties, 28, 1179-1184 (1991)
[14] Wereley, N. M.; Hall, S. R., Frequency response of linear time periodic systems, 3650-3655 (1990)
[15] Sandberg, H., On floquet-fourier realizations of linear time-periodic impulse responses, 1411-1416 (2006)
[16] Sandberg, H.; Möllerstedt, E., Frequency-domain analysis of linear time-periodic systems, IEEE Trans. Autom. Control, 50, 1971-1983 (2005) · Zbl 1365.93316 · doi:10.1109/TAC.2005.860294
[17] Zhou, J.; Hagiwara, T., Finite-dimensional models in evaluating the norm of continuous-time periodic systems (2005), Prague, Czech Republic
[18] Zhou, J.; Hagiwara, T.; Araki, M., Spectral characteristics and eigenvalues computation of the harmonic state operators in continuous-time periodic systems, Syst. Control. Lett., 53, 141-155 (2004) · Zbl 1157.93352 · doi:10.1016/j.sysconle.2004.03.002
[19] Zhou, J.; Hagiwara, T., H_2 and H_∞ norm computations of linear continuous-time periodic systems via the skew analysis of frequency response operators, Automatica, 38, 1381-1387 (2002) · Zbl 1044.93020 · doi:10.1016/S0005-1098(02)00038-9
[20] Zhou, J.; Hagiwara, T., Existence conditions and properties of the frequency response operators of continuous-time periodic systems, SIAM J. Control Optim., 40, 1867 (2002) · Zbl 1102.93303 · doi:10.1137/S0363012900382357
[21] Zhou, J.; Hagiwara, T.; Araki, M., Stability analysis of continuous-time periodic systems via the harmonic analysis, IEEE Trans. Automat. Contr., 47, 292-298 (2002) · Zbl 1364.93584 · doi:10.1109/9.983361
[22] Antoulas, A. C.; Beattie, C. A.; Gugercin, S., Efficient Modeling and Control of Large-Scale Systems, Interpolatory model reduction of large-scale dynamical systems, 3-58 (2010), Springer · Zbl 1229.65103
[23] Beattie, C.; Gugercin, S., Realization-independent H_2-approximation, 4953-4958 (2012)
[24] Flagg, G.; Beattie, C.; Gugercin, S., Convergence of the iterative rational Krylov algorithm, Syst. Control. Lett., 61, 688-691 (2012) · Zbl 1401.93051 · doi:10.1016/j.sysconle.2012.03.005
[25] Beattie, C.; Gugercin, S., A trust region method for optimal H_2 model reduction (2009)
[26] Kellems, A.; Roos, D.; Xiao, N.; Cox, S., Low-dimensional, morphologically accurate models of subthreshold membrane potential, J. Comput. Neurosci., 27, 161-176 (2009) · doi:10.1007/s10827-008-0134-2
[27] Borggaard, J.; Cliff, E.; Gugercin, S., Model reduction for indoor-air behavior in control design for energy-efficient buildings, 2012, 2283-2288 (2012)
[28] Grimshaw, R., Nonlinear Ordinary Differential Equations, 2 (1991), CRC Press · Zbl 0743.34002
[29] Moore, G., Floquet theory as a computational tool, SIAM J. Numer. Anal., 42, 2522-2568 (2005) · Zbl 1080.37017 · doi:10.1137/S0036142903434175
[30] Cai, Z.; Gu, Y.; Zhong, W., A new approach of computing Floquet transition matrix, Comput. Struct., 79, 631-635 (2001) · doi:10.1016/S0045-7949(00)00169-3
[31] Borwein, D.; Kratz, W., Weighted convolution operators on l_p, Can. Math. Bull., 48, 175-179 (2005) · Zbl 1088.47021 · doi:10.4153/CMB-2005-015-x
[32] Zygmund, A., Trigonometric Series, 1 (2002), Cambridge university press · Zbl 1084.42003
[33] Stykel, T.; Vasilyev, A., A two-step model reduction approach for mechanical systems with moving loads, J. Comput. Appl. Math., 297, 85-97 (2016) · Zbl 1326.93018 · doi:10.1016/j.cam.2015.11.014
[34] Magruder, C. C. III, Model reduction of linear time-periodic dynamical systems (2013), Virginia Tech
[35] Mullis, C.; Roberts, R., Synthesis of minimum roundoff noise fixed point digital filters, IEEE Trans. Circuits Syst., 23, 551-562 (1976) · Zbl 0342.93066 · doi:10.1109/TCS.1976.1084254
[36] Moore, B., Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Automat. Contr., 26, 17-32 (1981) · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[37] Glover, K., All optimal Hankel-norm approximations of linear multivariable systems and their l_∞-error bounds, Int. J. Control, 39, 1115-1193 (1984) · Zbl 0543.93036 · doi:10.1080/00207178408933239
[38] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische mathematik, 90, 117-148 (2001) · Zbl 1005.65112 · doi:10.1007/s002110100282
[39] Steih, K.; Urban, K., Space-time reduced basis methods for time-periodic partial differential equations, IFAC Proc. Vol., 45, 710-715 (2012) · doi:10.3182/20120215-3-AT-3016.00126
[40] Sorensen, D. C.; Zhou, Y., Direct methods for matrix Sylvester and Lyapunov equations, J. Appl. Math., 2003, 277-303 (2003) · Zbl 1028.65039 · doi:10.1155/S1110757X03212055
[41] Lang, N.; Saak, J.; Benner, P.; Ihlenfeldt, S.; Nestmann, S.; Schädlich, K., Towards the identification of heat induction in chip removing processes via an optimal control approach, Production Eng., 9, 343-349 (2015) · doi:10.1007/s11740-015-0608-9
[42] Noda, T.; Semlyen, A.; Iravani, R., Harmonic domain dynamic transfer function of a nonlinear time-periodic network, IEEE Trans. Power Deliv., 18, 1433-1441 (2003) · doi:10.1109/TPWRD.2003.817788
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.