×

Comparison of three simulation methods for colloidal aggregates in Stokes flow: finite elements, lattice Boltzmann and Stokesian dynamics. (English) Zbl 1290.76027

Summary: Dilute suspensions of colloidal aggregates of two different types are investigated numerically by three different methods; Stokesian dynamics (SD), the finite element method (FEM) and the lattice Boltzmann method (LBM). The Navier-Stokes equations are solved in the zero-Reynolds-number limit, and the fluid forces acting on particles within the aggregates as well as the aggregates’ influence on the fluid flow are evaluated by the discrete methods. Two fluid-flow profiles are considered; uniform plug flow and linear shear flow. The paper compares three methods in their own typical simulation environment. Thus, the results may provide practical guidelines on which methods to chose for certain accuracy requirements.

MSC:

76D07 Stokes and related (Oseen, etc.) flows
76M10 Finite element methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods

Software:

MUPHY; RYUON
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Flesch, J.; Spicer, P.; Pratsinis, S., Laminar and turbulent shear-induced flocculation of fractal aggregates, AIChE J, 45, 5, 1114-1124 (1999), ISSN 1547-590
[2] Melis, S.; Verduyn, M.; Storti, G.; Morbidelli, M.; Bałdyga, J., Effect of fluid motion on the aggregation of small particles subject to interaction forces, AIChE J, 45, 7, 1383-1393 (1999), ISSN 1547-590
[3] Soos, M.; Sefcik, J.; Morbidelli, M., Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering, Chem Eng Sci, 61, 8, 2349-2363 (2006), ISSN 0009-2509
[4] Dzwinel, W.; Yuen, D.; Boryczko, K., Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model, J Mol Model, 8, 1, 33-43 (2002), ISSN 1610-2940
[5] Gastaldi, A.; Vanni, M., The distribution of stresses in rigid fractal-like aggregates in a uniform flow field, J Colloid Interface Sci, 357, 18-30 (2011), ISSN 0021-9797
[6] Brasil, A. M.; Farias, T. L.; Carvalho, M. G.; Koylu, U. O., Numerical characterization of the morphology of aggregated particles, J Aerosol Sci, 32, 489-508 (2001)
[7] Brady, J. F., Stokesian dynamics, Annu Rev Fluid Mech, 20, 111-157 (1988)
[8] Durlofsky, L.; Brady, J.; Bossis, G., Dynamic simulation of hydrodynamically interacting particles, JFM, 180, 21-49 (1987) · Zbl 0622.76040
[9] Phillips, R.; Brady, J.; Bossis, G., Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles, Phys Fluids, 31, 3462-3473 (1988)
[10] Phillips, R.; Brady, J.; Bossis, G., Hydrodynamic transport properties of hard-sphere dispersions. II. Porous media, Phys Fluids, 31, 3473-3480 (1988)
[11] Bossis, G.; Meunier, A.; Brady, J., Hydrodynamic stress on fractal aggregates of spheres, J Chem Phys, 94, 7, 5064-5070 (1991), ISSN 0021-9606
[12] Sierou, A.; Brady, J. F., Accelerated stokesian dynamics simlations, J Fluid Mech, 448, 115-146 (2001) · Zbl 1045.76034
[13] Ichiki, K., Improvement of the Stokesian dynamics method for systems with a finite number of particles, J Fluid Mech, 452, 231-262 (2002) · Zbl 1059.76059
[14] Wagner, N.; Brady, J., Shear thickening in colloidal dispersions, Phys Ther, 62, 10, 27-32 (2009)
[15] Harshe, Y.; Ehrl, L.; Lattuada, M., Hydrodynamic properties of rigid fractal aggregates of arbitrary morphology, J Colloid Interface Sci, 352, 87-98 (2010), ISSN 0021-9797
[16] Seto, R.; Botet, R.; Briesen, H., Hydrodynamic stress on small colloidal aggregates in shear flow using Stokesian dynamics, Phys Rev E, 84, 4, 041405 (2011)
[17] Fellay, L. S.; Vanni, M., The effect of flow configuration on hydrodynamic stresses and dispersion of low density rigid aggregates, J Colloid Interface Sci, 388, 1, 47-55 (2012)
[18] Harshe, Y. M.; Lattuada, M.; Soos, M., Experimental and modeling study of breakage and restructuring of open and dense colloidal aggregates, Langmuir, 27, 10, 5739-5752 (2011)
[19] Seto, R.; Botet, R.; Auernhammer, G. K.; Briesen, H., Restructuring of colloidal aggregates in shear flow: coupling interparticle contact models with Stokesian dynamics, Eur Phys J E, 35, 128 (2012)
[20] Happel, J.; Brenner, H., Low Reynolds number hydrodynamics (1983), Kluwer
[21] Higuera, F. J.; Succi, S.; Benzi, R., Lattice gas dynamics with enhanced collisions, EPL (Europhys Lett), 9, 4, 345 (1989)
[22] Qian, Y. H.; d’Humiéres, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys Lett, 17, 6, 479-484 (1992) · Zbl 1116.76419
[23] Ladd, A. J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J Fluid Mech, 271, 285-309 (1994) · Zbl 0815.76085
[24] He, X.; Luo, L.-S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys Rev E, 56, 6, 6811-6817 (1997)
[25] Lallemand, P.; Luo, L.-S., Lattice Boltzmann method for moving boundaries, J Comput Phys, 184, 2, 406-421 (2003) · Zbl 1062.76555
[26] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equation: theory and applications, Phys Rep, 222, 3, 145-197 (1992)
[27] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu Rev Fluid Mech, 30, 1, 329-364 (1998) · Zbl 1398.76180
[28] Hölzer, A.; Sommerfeld, M., Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles, Comput Fluids, 38, 3, 572-589 (2009), ISSN 0045-7930
[29] Dietzel, M.; Sommerfeld, M., LBM simulations on agglomerate transport and deposition, AIP Conf Proc, 1207, 796-801 (2010)
[30] Ernst, M.; Sommerfeld, M., On the volume fraction effects of inertial colliding particles in homogeneous isotropic turbulence, J Fluid Eng, 134, 3, 031302.1-031302.16 (2012)
[31] Hölzer, A.; Sommerfeld, M., Analysis of the behaviour of cylinders in homogeneous isotropic turbulence by lattice-Boltzmann method, ERCOFTAC Bull, 82, 11-16 (2010)
[32] Feng, Z.-G.; Michaelides, E. E., The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J Comput Phys, 195, 2, 602-628 (2004) · Zbl 1115.76395
[33] Derksen, J.; Eskin, D., Flow-induced forces in agglomerates, Fluid Dyn Mater Proc, 7, 4, 341-355 (2011)
[34] Dünweg, B.; Ladd, A. J.C., Lattice Boltzmann simulations of soft matter systems, Adv Polym Sci, 221, 89 (2009)
[35] Fyta, M.; Melchionna, S.; Succi, S.; Kaxiras, E., Hydrodynamic correlations in the translocation of a biopolymer through a nanopore: theory and multiscale simulations, Phys Rev E, 78, 3, 036704 (2008)
[36] Bernaschi, M.; Melchionna, S.; Succi, S.; Fyta, M.; Kaxiras, E.; Sircar, J., MUPHY: a parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations, Comput Phys Commun, 180, 9, 1495-1502 (2009)
[37] Melchionna, S.; Pontrelli, G.; Bernaschi, M.; Bisson, M.; Halliday, I.; Spencer, T., The Lattice Boltzmann method as a general framework for blood flow modeling and simulations. The Lattice Boltzmann method as a general framework for blood flow modeling and simulations, Nano and micro flow systems for bioanalysis (2012), Springer
[38] Binder, C.; Feichtinger, C.; Schmid, H.-J.; Thürey, N.; Peukert, W.; Rüde, U., Simulation of the hydrodynamic drag of aggregated particles, J Colloid Interface Sci, 301, 155-167 (2006)
[39] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys Rev, 94, 3, 511-525 (1954), doi: 10.1103/PhysRev.94.511 · Zbl 0055.23609
[40] Jeffrey, D.; Onishi, Y., Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow, J Fluid Mech, 139, 1, 261-290 (1984) · Zbl 0545.76037
[41] Jeffrey, D., The calculation of the low Reynolds number resistance functions for two unequal spheres, Phys Fluids A-Fluid, 4, 16 (1992)
[43] Behr, M.; Tezduyar, T., Finite element solution strategies for large-scale flow simulations, Comput Method Appl Mech Eng, 112, 3-24 (1994) · Zbl 0846.76041
[44] Donea, J.; Huerta, A., Finite element methods for flow problems (2003), John Wiley & Sons Ltd
[45] Wylie, B. J.N.; Geimer, M.; Nicolai, M.; Probst, M., Performance analysis and tuning of the XNS CFD solver on Blue Gene/L, (Cappello, F.; Herault, T.; Dongarra, J., Recent advances in parallel virtual machine and message passing interface (2007), Springer), p. 107-16
[46] Guo, Z.; Zheng, C.; Shi, B., An extrapolation method for boundary conditions in lattice Boltzmann method, Phys Fluids, 14, 2007-2010 (2002) · Zbl 1185.76156
[47] Crouse, B.; Rank, E.; Krafczyk, M.; Tölke, J., A LB-based approach for adaptive flow simulations, Int J Mod Phys B, 17, 1, 109-112 (2003), ISSN 0217-9792
[48] Teike, G.; Dietzel, M.; Michaelis, B.; Schomburg, H.; Sommerfeld, M., Multiscale lattice-Boltzmann approach for electrophoretic particle deposition, Aerosol Sci Technol, 46, 4, 451-464 (2012)
[49] Becker, V.; Schlauch, E.; Behr, M.; Briesen, H., Restructuring of colloidal aggregates in shear flows and limitations of the free-draining approximation, J Colloid Interface Sci, 339, 362-372 (2009)
[50] Givoli, D., Numerical methods for problems in infinite domains (1992), Elsevier: Elsevier Amsterdam · Zbl 0788.76001
[51] Becker, V.; Briesen, H., A master curve for the onset of shear induced restructuring of fractal colloidal aggregates, J Colloid Interface Sci, 346, 1, 32-36 (2010), ISSN 0021-9797
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.