×

Mutually unbiased bases and Hadamard matrices of order six. (English) Zbl 1144.81314

Summary: We report on a search for mutually unbiased bases (MUBs) in six dimensions. We find only triplets of MUBs, and thus do not come close to the theoretical upper bound 7. However, we point out that the natural habitat for sets of MUBs is the set of all complex Hadamard matrices of the given order, and we introduce a natural notion of distance between bases in Hilbert space. This allows us to draw a detailed map of where in the landscape the MUB triplets are situated. We use available tools, such as the theory of the discrete Fourier transform, to organize our results. Finally, we present some evidence for the conjecture that there exists a four dimensional family of complex Hadamard matrices of order 6. If this conjecture is true the landscape in which one may search for MUBs is much larger than previously thought.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
15B36 Matrices of integers
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Sylvester J. J., Philos. Mag. 34 pp 461– (1867)
[2] Hadamard M. J., Bull. Sci. Math. 17 pp 240– (1893)
[3] DOI: 10.1088/0305-4470/14/12/019 · doi:10.1088/0305-4470/14/12/019
[4] DOI: 10.1016/0003-4916(89)90322-9 · doi:10.1016/0003-4916(89)90322-9
[5] Popa S., J. Oper. Theory 9 pp 253– (1983)
[6] Kostrikin A. I., Proc. Steklov Inst. Math. 1983 (4) pp 113– (1983)
[7] DOI: 10.1109/TIT.1980.1056185 · Zbl 0432.94011 · doi:10.1109/TIT.1980.1056185
[8] DOI: 10.1112/S0024611597000403 · Zbl 0916.94014 · doi:10.1112/S0024611597000403
[9] Haagerup U., Operator Algebras and Quantum Field Theory, Rome (1996) (1997)
[10] DOI: 10.1088/0305-4470/37/20/008 · Zbl 1062.81018 · doi:10.1088/0305-4470/37/20/008
[11] DOI: 10.1007/s11080-006-8220-2 · Zbl 1105.15020 · doi:10.1007/s11080-006-8220-2
[12] G. Zauner, Ph.D. thesis, Universitat Wien, 1999.
[13] DOI: 10.1515/9783110901757 · doi:10.1515/9783110901757
[14] Grassl M., Proceedings ERATO Conference on Quantum Information Science 2004 (2004)
[15] DOI: 10.1016/S0747-7171(08)80153-8 · Zbl 0751.12001 · doi:10.1016/S0747-7171(08)80153-8
[16] Tao T., Build. Services Eng. Res. Technol. 11 pp 251– (2004)
[17] Ufnarovskiĭ V. A., Mat. Issled. 90 pp 113– (1986)
[18] DOI: 10.1017/CBO9780511535048 · doi:10.1017/CBO9780511535048
[19] DOI: 10.1080/10586458.1996.10504585 · Zbl 0864.51012 · doi:10.1080/10586458.1996.10504585
[20] DOI: 10.1088/0305-4470/23/18/013 · doi:10.1088/0305-4470/23/18/013
[21] DOI: 10.1063/1.1737053 · Zbl 1071.81015 · doi:10.1063/1.1737053
[22] Wocjan P., Quantum Inf. Comput. 5 pp 93– (2005)
[23] Klappenecker A., Lecture Notes in Computer Science 2948, in: Proceedings of Seventh International Conference on finite fields and applications (2004) · doi:10.1007/978-3-540-24633-6_10
[24] DOI: 10.1007/s10801-006-0002-y · Zbl 1109.81016 · doi:10.1007/s10801-006-0002-y
[25] DOI: 10.1063/1.1829153 · Zbl 1076.81002 · doi:10.1063/1.1829153
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.