×

zbMATH — the first resource for mathematics

Tetravalent arc-transitive graphs of order twice a product of two primes. (English) Zbl 1254.05073
Summary: In this article a complete classification of tetravalent arc-transitive graphs of order twice a product of two primes is given.
MSC:
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C75 Structural characterization of families of graphs
Software:
Magma
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bosma, W.; Cannon, J.; Playoust, C., The magma algebra system. i. the user language, J. symbolic comput., 24, 235-265, (1997) · Zbl 0898.68039
[2] Dixon, J.; Mortimer, B., Permutation groups, (1996), Springer-Verlag New York · Zbl 0951.20001
[3] Djoković, D.; Miller, G., Regular groups of automorphisms of cubic graphs, J. combin. theory ser. B, 29, 195-230, (1980) · Zbl 0385.05040
[4] Feng, Y.Q.; Kwak, J.H., Classifying cubic symmetric graphs of order \(10 p\) or \(10 p^2\), Sci. China ser. A, 49, 300-319, (2006) · Zbl 1109.05051
[5] Feng, Y.Q.; Kwak, J.H., Cubic symmetric graphs of order a small number times a prime or a prime square, J. combin. theory ser. B, 97, 627-646, (2007) · Zbl 1118.05043
[6] Feng, Y.Q.; Kwak, J.H.; Wang, K., Classifying cubic symmetric graphs of order \(8 p\) or \(8 p^2\), European J. combin., 26, 1033-1052, (2005) · Zbl 1071.05043
[7] Foster, R., The foster census, (1988), Charles Babbage Research Centre Winnipeg, MB
[8] Gardiner, A.; Praeger, C., A characterization of certain families of 4-valent symmetric graphs, European J. combin., 15, 383-397, (1994) · Zbl 0806.05038
[9] Gardiner, A.; Praeger, C., On 4-valent symmetric graphs, European J. combin., 15, 375-381, (1994) · Zbl 0806.05037
[10] Gorenstein, D., ()
[11] Hassani, A.; Nochefranca, L.; Praeger, C., Two-arc transitive graphs admitting a two-dimensional projective linear group, J. group theory, 2, 335-353, (1999) · Zbl 0955.05054
[12] Kuzman, B., Arc-transitive elementary abelian covers of the complete graph \(K_5\), Linear algebra appl., 433, 1909-1921, (2010) · Zbl 1208.05113
[13] Malnič, A.; Marušič, D.; Potočnik, P., Elementary abelian covers of graphs, J. algebraic combin., 20, 71-97, (2004) · Zbl 1065.05050
[14] Malnič, A.; Potočnik, P., Invariant subspaces, duality, and covers of the Petersen graph, European J. combin., 27, 971-989, (2006) · Zbl 1091.05033
[15] Marušič, D.; Potočnik, P., Classifying 2-arc-transitive graphs of order a product of two primes, Discrete math., 244, 331-338, (2002) · Zbl 0994.05075
[16] Marušič, D.; Scapellato, R., Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica, 14, 187-201, (1994) · Zbl 0799.05027
[17] Marušič, D.; Šparl, P., On quartic half-arc-transitive metacirculants, J. algebraic combin., 28, 365-395, (2008) · Zbl 1160.05032
[18] Miklavič, Š; Potočnik, P.; Wilson, S., Arc-transitive cycle decompositions of tetravalent graphs, J. combin. theory ser. B, 98, 1181-1192, (2008) · Zbl 1198.05094
[19] Miller, R., The trivalent symmetric graphs of girth at most six, J. combin. theory ser. B, 10, 163-182, (1971) · Zbl 0223.05113
[20] Potočnik, P., A List of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index (4,2), European J. combin., 30, 1323-1336, (2009) · Zbl 1208.05056
[21] P. Potočnik, Primož Potočnik’s home page. http://www.fmf.uni-lj.si/ potocnik/work.htm, 2011.
[22] P. Potočnik, P. Spiga, G. Verret, Bounding the order of the vertex-stabiliser in 3-valent vertex-transitive and 4-valent arc-transitive graphs, J. Symb. Comp. (in press), see also arXiv:1010.2546 [math.CO]. · Zbl 1307.05114
[23] P. Potočnik, P. Spiga, G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices, J. Symb. Comp. (in press), see also arXiv:1201.5317 [math.CO]. · Zbl 1256.05102
[24] Potočnik, P.; Wilson, S., Tetravalent edge-transitive graphs of girth at most 4, J. combin. theory ser. B, 97, 217-236, (2007) · Zbl 1110.05047
[25] Potočnik, P.; Spiga, P.; Verret, G., Tetravalent arc-transitive graphs with unbounded vertex-stabilizers, Bull. aust. math. soc., 84, 79-89, (2011) · Zbl 1222.05102
[26] Praeger, C.; Wang, R.J.; Xu, M.Y., Symmetric graphs of order a product of two distinct primes, J. combin. theory ser. B, 58, 299-318, (1993) · Zbl 0793.05071
[27] Robinson, D., A course in the theory of groups, (1996), Springer-Verlag New York
[28] Tutte, W., A family of cubical graphs, Proc. Cambridge philos. soc., 43, 459-474, (1947) · Zbl 0029.42401
[29] Weiss, R., Presentations for \((g, s)\)-transitive graphs of small valency, Math. proc. Cambridge philos. soc., 101, 7-20, (1987) · Zbl 0626.05049
[30] S. Wilson, A census of edge-transitive tetravalent graphs. http://jan.ucc.nau.edu/ swilson/C4Site/index.html, 2011.
[31] Zhou, J.X., Tetravalent s-transitive graphs of order 4p, Discrete math., 309, 6081-6086, (2009) · Zbl 1208.05058
[32] Zhou, J.X.; Feng, Y.Q., Tetravalent one-regular graphs of order \(2 p q\), J. algebraic combin., 29, 457-471, (2009) · Zbl 1194.05057
[33] Zhou, J.X.; Feng, Y.Q., Tetravalent \(s\)-transitive graphs of order twice a prime power, J. aust. math. soc., 88, 277-288, (2010) · Zbl 1214.05052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.