×

zbMATH — the first resource for mathematics

Magnetic particle microrheometric dynamics in Newtonian fluids: numerical simulations on the early motion and beyond. (English) Zbl 1184.76907
Summary: Rotating magnetic particle microrheometry has been a promising technique in measuring material properties in limited-sample high-viscosity fluids. Experimental limitations in the early motion require further theoretical exploration. In this work, the rotation of a ferromagnetic particle is considered under the influence of an external uniform magnetic field in an infinite highly viscous Newtonian fluid. The motion is restricted at the very low Reynolds number limit. Early-time analytical approximations are utilised to initiate numerical calculations in an attempt to describe the azimuthal velocity dependency on scaled time and radius. The equation of motion is solved by implementing a Crank-Nicholson finite-difference scheme, while the driving time-dependent boundary condition is discretised according to a Lax-Wendroff scheme. Stability and convergence criteria for the PDE are also discussed. It is demonstrated that the step function form of the applied magnetic field does not cause finite displacement other than that expected from Newtonian fluid flow for the typical magnetic field magnitude ranges encountered in micro-rheometric studies. The numerical solution is compared against analytical values available for particle ‘zero-total-torque’ condition and it was found to be second-order accurate in time and radial dimension.
MSC:
76W05 Magnetohydrodynamics and electrohydrodynamics
76D07 Stokes and related (Oseen, etc.) flows
76M20 Finite difference methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Batchelor G.K., An introduction to fluid dynamics (1967) · Zbl 0152.44402
[2] DOI: 10.1063/1.2766947 · doi:10.1063/1.2766947
[3] DOI: 10.1122/1.551006 · doi:10.1122/1.551006
[4] Bird R.B., Transport phenomena (1960)
[5] DOI: 10.1103/PhysRevE.69.041406 · doi:10.1103/PhysRevE.69.041406
[6] Brenner H., Journal of Fluid Mechanics 3 pp 35– (1961)
[7] DOI: 10.1017/S002211206300152X · Zbl 0116.18003 · doi:10.1017/S002211206300152X
[8] DOI: 10.1016/0377-0257(88)85062-6 · Zbl 0669.76016 · doi:10.1016/0377-0257(88)85062-6
[9] DOI: 10.1017/S0022112064001227 · doi:10.1017/S0022112064001227
[10] Edwardes D., Quarterly Journal of Mathematics 26 pp 70– (1892)
[11] DOI: 10.1007/BF01974457 · Zbl 0136.45203 · doi:10.1007/BF01974457
[12] DOI: 10.1103/PhysRevLett.82.1606 · doi:10.1103/PhysRevLett.82.1606
[13] Happel J., Low Reynolds number hydrodynamics (1983)
[14] Kim S.T., Microhydrodynamics (1991)
[15] Lamb H., Hydrodynamics (1932) · JFM 58.1298.04
[16] DOI: 10.1103/PhysRevLett.79.3282 · doi:10.1103/PhysRevLett.79.3282
[17] Milne-Thomson L.M., Theoretical hydrodynamics, 4. ed. (1960)
[18] Mitchell A.R., The finite-difference method in partial differential equations (1980) · Zbl 0417.65048
[19] DOI: 10.1017/S0022112067002101 · Zbl 0147.45701 · doi:10.1017/S0022112067002101
[20] DOI: 10.1017/S0022112057000105 · Zbl 0077.39103 · doi:10.1017/S0022112057000105
[21] DOI: 10.1017/S0022112061000640 · Zbl 0103.19503 · doi:10.1017/S0022112061000640
[22] DOI: 10.1017/S0022112084002214 · Zbl 0548.76031 · doi:10.1017/S0022112084002214
[23] Smith G.D., Numerical solution of partial differential equations: finite difference methods, 3. ed. (1989)
[24] Spiegel M.R., Theory and problems of Laplace transforms (1965)
[25] DOI: 10.1083/jcb.101.1.130 · doi:10.1083/jcb.101.1.130
[26] DOI: 10.1016/S0006-3495(87)83243-5 · doi:10.1016/S0006-3495(87)83243-5
[27] DOI: 10.1016/S0006-3495(87)83244-7 · doi:10.1016/S0006-3495(87)83244-7
[28] DOI: 10.1088/0508-3443/14/10/316 · doi:10.1088/0508-3443/14/10/316
[29] DOI: 10.1088/0508-3443/15/8/317 · doi:10.1088/0508-3443/15/8/317
[30] DOI: 10.1103/PhysRevE.67.011504 · doi:10.1103/PhysRevE.67.011504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.