×

MADNESS: a multiresolution, adaptive numerical environment for scientific simulation. (English) Zbl 1365.65327

Summary: MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision that are based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.

MSC:

65Y15 Packaged methods for numerical algorithms
00A72 General theory of simulation
65-04 Software, source code, etc. for problems pertaining to numerical analysis
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65T60 Numerical methods for wavelets
65Y05 Parallel numerical computation
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] MADNESS Code Repository, https://github.com/m-a-d-n-e-s-s/madness.
[2] OpenDX, http://www.opendx.org.
[3] Threading Building Blocks, https://www.threadingbuildingblocks.org.
[4] VisIt, https://wci.llnl.gov/simulation/computer-codes/visit.
[6] B. Alpert, {\it A class of bases in \({L}^2\) for the sparse representation of integral operators}, SIAM J. Math. Anal., 24 (1993), pp. 246-262. · Zbl 0764.42017
[7] B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, {\it Adaptive solution of partial differential equations in multiwavelet bases}, J. Comput. Phys., 182 (2002), pp. 149-190. · Zbl 1015.65046
[8] H. G. Baker, Jr., and C. Hewitt, {\it The incremental garbage collection of processes}, in Proceedings of the 1977 Symposium on Artificial Intelligence and Programming Languages, ACM, New York, 1977, pp. 55-59.
[9] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, B. F. Smith, and H. Zhang, {\it PETSc Users Manual Revision} 3.5, Technical report ANL-95/11 Rev. 3.5, Argonne National Laboratory, 2014.
[10] G. Beylkin, V. Cheruvu, and F. Pérez, {\it Fast adaptive algorithms in the non-standard form for multidimensional problems}, Appl. Comput. Harmon. Anal., 24 (2008), pp. 354-377. · Zbl 1139.65078
[11] G. Beylkin, R. Coifman, and V. Rokhlin, {\it Fast wavelet transforms and numerical algorithms} I, Comm. Pure Appl. Math., 44 (1991), pp. 141-183. · Zbl 0722.65022
[12] G. Beylkin, R. Cramer, G. Fann, and R. J. Harrison, {\it Multiresolution separated representations of singular and weakly singular operators}, Appl. Comput. Harmon. Anal., 23 (2007), pp. 235-253. · Zbl 1134.42023
[13] G. Beylkin and L. Monzón, {\it Approximation by exponential sums revisited}, Appl. Comput. Harmon. Anal., 28 (2010), pp. 131-149. · Zbl 1189.65035
[14] F. A. Bischoff, R. J. Harrison, and E. F. Valeev, {\it Computing many-body wave functions with guaranteed precision: The first-order Møller-Plesset wave function for the ground state of helium atom}, J. Chem. Phys., 137 (2012), 104103.
[15] F. A. Bischoff and E. F. Valeev, {\it Computing molecular correlation energies with guaranteed precision}, J. Chem. Phys., 139 (2013), 114106.
[16] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou, {\it Cilk: An efficient multithreaded runtime system}, in Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), Santa Barbara, CA, 1995, pp. 207-216.
[17] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. L. Zhou, {\it Cilk: An efficient multithreaded runtime system}, J. Parallel Distrib. Comput., 37 (1996), pp. 55-69.
[18] J. A. Calvin, C. A. Lewis, and E. F. Valeev, {\it Scalable task-based algorithm for multiplication of block-rank-sparse matrices}, in Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms, IA3 ’15, New York, 2015, ACM, pp. 4:1-4:8.
[19] J. A. Calvin and E. F. Valeev, {\it TiledArray: A massively-parallel, block-sparse tensor library written in C++}, https://github.com/valeevgroup/tiledarray/, 2015.
[20] S. A. Chin and C. R. Chen, {\it Fourth order gradient symplectic integrator methods for solving the time-dependent schrödinger equation}, J. Chem. Phys., 114 (2001), pp. 7338-7341.
[21] C. Cohen-Tannoudji, B. Diu, and F. Laloë, {\it Quantum Mechanics}, John-Wiley and Sons, West Sussex, UK, 2000. · Zbl 1440.81003
[22] T. A. Driscoll, N. Hale, and L. N. Trefethen, eds., {\it Chebfun Guide}, Pafnuty Publications, Oxford, 2014.
[23] G. Fann, G. Beylkin, R. J. Harrison, and K. E. Jordan, {\it Singular operators in multiwavelet bases}, IBM J. Res. Devel., 48 (2004), pp. 161-171.
[24] G. I. Fann, J. Pei, R. J. Harrison, J. Jia, J. Hill, M. Ou, W. Nazarewicz, W. A. Shelton, and N. Schunck, {\it Fast multiresolution methods for density functional theory in nuclear physics}, J. Phys. Conf. Ser., 180 (2009), 012080.
[25] J. Fosso-Tande and R. J. Harrison, {\it Implicit solvation models in a multiresolution multiwavelet basis}, Chem. Phys. Lett., 561-562 (2013), pp. 179-184.
[26] L. Frediani, E. Fossgaard, T. Fl\aa, and K. Ruud, {\it Fully adaptive algorithms for multivariate integral equations using the non-standard form and multiwavelets with applications to the Poisson and bound-state Helmholtz kernels in three dimensions}, Mol. Phys., 111 (2013), pp. 1143-1160.
[27] R. J. Harrison, {\it Krylov subspace accelerated inexact Newton method for linear and nonlinear equations}, J. Comput. Chem., 25 (2004), pp. 328-334.
[28] R. J. Harrison, G. I. Fann, T. Yanai, and G. Beylkin, {\it Multiresolution quantum chemistry in multiwavelet bases}, Lecture Notes in Comput. Sci. 2660, Springer, Heidelberg, 2003, pp. 103-110.
[29] R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan, and G. Beylkin, {\it Multiresolution quantum chemistry: Basic theory and initial applications}, J. Chem. Phys., 121 (2004), pp. 11587-11598.
[30] A. Henderson, {\it ParaView Guide, A Parallel Visualization Application}, Kitware, 2007.
[31] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, {\it An overview of the trilinos project}, ACM Trans. Math. Software, 31 (2005), pp. 397-423. · Zbl 1136.65354
[32] J. D. Jackson, {\it Classical Electrodynamics}, 3rd ed., John Wiley & Sons, West Sussex, UK, 1999. · Zbl 0920.00012
[33] J. Jia, R. Harrison, and G. Fann, {\it Fast transform from an adaptive multi-wavelet representation to a partial Fourier representation}, J. Comput. Phys., 229 (2010), pp. 5870-5878. · Zbl 1197.65234
[34] J. Jia, J. C. Hill, G. I. Fann, and R. J. Harrison, {\it Multiresolution fast methods for a periodic 3-D Navier-Stokes solver}, in Proceedings of DCABES 2009: The 8th International Symposium on Distributed Computing and Applications to Business, Engineering, and Science, 2009, pp. 13-16.
[35] L. V. Kalé, {\it Parallel Programming with CHARM: An Overview}, Technical report, Parallel Programming Laboratory, University of Illinois at Urbana-Champaign, 1993.
[36] L. V. Kalé and S. Krishnan, {\it CHARM++: A portable concurrent object oriented system based on C++}, in Proceedings of the 8th Annual Conference on Object-oriented Programming Systems, Languages, and Applications, Anrdeas Paepcke, ed., ACM, New York, 1993, pp. 91-108.
[37] L. V. Kalé, B. Ramkumar, A. B. Sinha, and V. A. Saletore, {\it The CHARM Parallel Programming Language and System: Part II–The Runtime System}, Technical report, Parallel Programming Laboratory, University of Illinois at Urbana-Champaign, 1994.
[38] M. H. Kalos, {\it Monte Carlo calculations of the ground state of three- and four-body nuclei}, Phys. Rev., 128 (1962), pp. 1791-1795.
[39] J. S. Kottmann, S. Höfener, and F. A. Bischoff, {\it Numerically accurate linear response-properties in the configuration-interaction singles (CIS) approximation}, Phys. Chem. Chem. Phys., 17 (2015), http://dx.doi.org/10.1039/C5CP00345H doi:10.1039/C5CP00345H.
[40] A. Logg, K.-A. Mardal, and G. N. Wells, eds., {\it Automated Solution of Differential Equations by the Finite Element Method}, Springer, Heidelberg, 2012. · Zbl 1247.65105
[41] J. C. Pei, G. I. Fann, R. J. Harrison, W. Nazarewicz, J. Hill, D. Galindo, and J. Jia, {\it Coordinate-space Hartree-Fock-Bogoliubov for superfluid Fermi systems in large boxes}, J. Phys. Conf. Ser., 402 (2012), 012035.
[42] J. C. Pei, G. I. Fann, R. J. Harrison, W. Nazarewicz, Y. Shi, and S. Thornton, {\it Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure}, Phys. Rev. C, 90 (2014), 024317.
[43] J. C. Pei, M. V. Stoitsov, G. I. Fann, W. Nazarewicz, N. Schunck, and F. R. Xu, {\it Deformed coordinate-space Hartree-Fock-Bogoliubov approach to weakly bound nuclei and large deformations}, Phy. Rev. C, 78 (2008), 064306.
[44] M. G. Reuter, J. C. Hill, and R. J. Harrison, {\it Solving PDEs in irregular geometries with multiresolution methods I: Embedded Dirichlet boundary conditions}, Comput. Phys. Commun., 183 (2012), pp. 1-7. · Zbl 1263.65122
[45] M. G. Reuter, M. A. Ratner, and T. Seideman, {\it Laser alignment as a route to ultrafast control of electron transport}, Phys. Rev. A, 86 (2012), 013426.
[46] Y. Saad and M. H. Schultz, {\it GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems}, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869. · Zbl 0599.65018
[47] D. C. Schmidt, {\it The ADAPTIVE Communication Environment (ACE)}.
[48] D. C. Schmidt and S. D. Huston, {\it C++ Network Programming: Systematic Reuse with ACE and Frameworks}, Vol. 2, Pearson Education, Cranbury, NJ, 2002.
[49] H. Sekino, Y. Maeda, T. Yanai, and R. J. Harrison, {\it Basis set limit Hartree-Fock and density functional theory response property evaluation by multiresolution multiwavelet basis}, J. Chem. Phys., 129 (2008), 034111.
[50] H. Sekino, T. Okamoto, and S. Hamada, {\it Solution of wave-equation using multiresolution multiwavelet basis function}, in Proceedings of the 2010 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), 2010, pp. 355-358.
[51] B. D. Sullivan, D. Weerapurage, and C. Groer, {\it Parallel algorithms for graph optimization using tree decompositions}, in Proceedings of the 2013 IEEE 27th International Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013, pp. 1838-1847.
[52] E. F. Valeev and F. A. Bischoff, {\it private communication}, 2011.
[53] H. A. van der Vorst, {\it Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems}, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631-644. · Zbl 0761.65023
[54] N. Vence, R. Harrison, and P. Krstić, {\it Attosecond electron dynamics: A multiresolution approach}, Phys. Rev. A, 85 (2012), 033403.
[55] T. Yanai, G. I. Fann, G. Beylkin, and R. J. Harrison, {\it Multiresolution quantum chemistry in multiwavelet bases: Excited states from time-dependent Hartree-Fock and density functional theory via linear response}, Phys. Chem. Chem. Phys., 17 (2015), pp. 31405-31416.
[56] T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, and G. Beylkin, {\it Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree-Fock and density functional theory}, J. Chem. Phys., 121 (2004), pp. 2866-2876.
[57] T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, and G. Beylkin, {\it Multiresolution quantum chemistry in multiwavelet bases: Hartree-Fock exchange}, J. Chem. Phys., 121 (2004), pp. 6680-6688.
[58] T. Yanai, R. J. Harrison, and N. C. Handy, {\it Multiresolution quantum chemistry in multiwavelet bases: Time-dependent density functional theory with asymptotically corrected potentials in local density and generalized gradient approximations}, Mol. Phys, 103 (2005), pp. 413-424.
[59] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L Graham, P. Hargrove, P. Hilfinger, P. Husbands, et al., {\it Productivity and performance using partitioned global address space languages}, in Proceedings of the 2007 International Workshop on Parallel Symbolic Computation, ACM, New York, 2007, pp. 24-32.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.