×

Phase-field study of crack nucleation and propagation in elastic-perfectly plastic bodies. (English) Zbl 1441.74201

Summary: Crack initiation and propagation in elastic-perfectly plastic bodies is studied in a phase-field or variational gradient damage formulation. A rate-independent formulation that naturally couples elasticity, perfect plasticity and fracture is presented, and used to study crack initiation in notched specimens and crack propagation using a surfing boundary condition. Both plane strain and plane stress are addressed. It is shown that in plane strain, a plastic zone blunts the notch or crack tip which in turn inhibits crack nucleation and propagation. Sufficient load causes the crack to nucleate or unpin, but the crack does so with a finite jump. Therefore the propagation is intermittent or jerky leaving behind a rough surface. In plane stress, failure proceeds with an intense shear zone ahead of the notch or crack tip and the fracture process is not complete.

MSC:

74R10 Brittle fracture
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)

Software:

PETSc
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[2] Bourdin, Blaise; Francfort, Gilles A.; Marigo, Jean-Jacques, The variational approach to fracture, J. Elasticity, 91, 1-3, 5-148 (2008) · Zbl 1176.74018
[3] Francfort, G. A.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[4] Ambrosio, Luigi; Tortorelli, Vincenzo Maria, Approximation of functional depending on jumps by elliptic functional via t-convergence, Comm. Pure Appl. Math., 43, 8, 999-1036 (1990), ISSN: 00103640, http://dx.doi.org/10.1002/cpa.3160430805 · Zbl 0722.49020
[5] Pham, Kim; Amor, Hanen; Marigo, Jean-Jacques; Maurini, Corrado, Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., 20, 4, 618-652 (2011)
[6] Klinsmann, Markus; Rosato, Daniele; Kamlah, Marc; McMeeking, Robert M., An assessment of the phase field formulation for crack growth, Comput. Methods Appl. Mech. Engrg., 294, 313-330 (2015) · Zbl 1423.74833
[7] Pham, K. H.; Ravi-Chandar, K.; Landis, C. M., Experimental validation of a phase-field model for fracture, Int. J. Fract., 205, 1, 83-101 (2017)
[8] Zhang, Xue; Vignes, Chet; Sloan, Scott; Sheng, Daichao, Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale, J. Comput. Mech., 59, 737-752 (2017)
[9] Hutchinson, John W., A Course on Nonlinear Fracture Mechanics (1989), Department of Solid Mechanics, Techn. University of Denmark
[10] Rice, James R., Mathematical Analysis in the Mechanics of FractureTechnical Report (1968), URL http://esag.harvard.edu/rice/018_Rice_MathAnalMechFract_68.pdf
[11] Rice, J. R.; Po Sorensen, E., Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic – plastic solids, J. Mech. Phys. Solids, 26, 3, 163-186 (1978) · Zbl 0384.73066
[12] Gurson, Arthur L., Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 1, 2-15 (1977)
[13] Needleman, Al.; Tvergaard, V., An analysis of ductile rupture modes at a crack tip, J. Mech. Phys. Solids, 35, 2, 151-183 (1987) · Zbl 0601.73106
[14] Benzerga, A. Amine; Leblond, Jean-Baptiste, Ductile fracture by void growth to coalescence, (Advances in Applied Mechanics, vol. 44 (2010), Elsevier), 169-305
[15] Alessi, Roberto; Marigo, Jean-Jacques; Vidoli, Stefano, Gradient damage models coupled with plasticity and nucleation of cohesive cracks, Arch. Ration. Mech. Anal., 214, 2, 575-615 (2014) · Zbl 1321.74006
[16] Alessi, Roberto; Marigo, Jean-Jacques; Vidoli, Stefano, Gradient damage models coupled with plasticity: variational formulation and main properties, Mech. Mater., 80, 351-367 (2015)
[17] Ambati, Marreddy; Gerasimov, Tymofiy; De Lorenzis, Laura, Phase-field modeling of ductile fracture, Comput. Mech., 55, 5, 1017-1040 (2015) · Zbl 1329.74018
[18] de Borst, René; Pamin, Jerzy; Geers, Marc G. D., On coupled gradient-dependent plasticity and damage theories with a view to localization analysis, Eur. J. Mech. A Solids, 18, 6, 939-962 (1999) · Zbl 0968.74007
[19] Miehe, Christian; Hofacker, M.; Schänzel, L.-M.; Aldakheel, Fadi, Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic – plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522 (2015) · Zbl 1423.74837
[20] Miehe, Christian; Aldakheel, Fadi; Raina, Arun, Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, Int. J. Plast., 84, 1-32 (2016)
[21] Nedjar, B., Elastoplastic-damage modelling including the gradient of damage: formulation and computational aspects, Int. J. Solids Struct., 38, 30-31, 5421-5451 (2001) · Zbl 1013.74061
[22] Reusch, Frederick; Svendsen, Bob; Klingbeil, Dietmar, Local and non-local gurson-based ductile damage and failure modelling at large deformation, Eur. J. Mech. A Solids, 22, 6, 779-792 (2003) · Zbl 1032.74510
[23] Alessi, R.; Marigo, J.-J.; Maurini, C.; Vidoli, S., Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: One-dimensional examples, Int. J. Mech. Sci., 149, 559-576 (2017)
[24] Tanne, Erwan, Variational Phase-Field Models from Brittle To Ductile Fracture: Nucleation and Propagation (2017), Paris Saclay, (Ph.D. thesis)
[25] Descatha, Y.; Ledermann, P.; Devaux, J. C.; Mudry, F.; Pineau, A.; Lautridou, J. C., Experimental and numerical study of the different stages in ductile rupture- application to crack initiation and stable crack growth, (Three-Dimensional Constitutive Relations and Ductile Fracture.(A 83-18477 06-39) (1981), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam), 1981) 185-205
[26] Beremin, F. M., Cavity formation from inclusions in ductile fracture of a508 steel, Metall. Trans. A, 12, 5, 723-731 (1981)
[27] Benzerga, Ahmed Amine; Leblond, Jean-Baptiste; Needleman, Alan; Tvergaard, Viggo, Ductile failure modeling, Int. J. Fract., 201, 1, 29-80 (2016)
[28] Pineau, André; Benzerga, Amine A.; Pardoen, Thomas, Failure of metals i: Brittle and ductile fracture, Acta Mater., 107, 424-483 (2016)
[29] Kobayashi, T.; Giovanola, J. H., Crack opening profile observations for dynamic cleavage crack propagation and arrest, J. Mech. Phys. Solids, 37, 6, 759-777 (1989)
[30] Bourdin, Blaise; Marigo, Jean-Jacques; Maurini, Corrado; Sicsic, Paul, Morphogenesis and propagation of complex cracks induced by thermal shocks, Phys. Rev. Lett., 112, 1, Article 014301 pp. (2014)
[31] Bourdin, B.; Larsen, C. J.; Richardson, C., A time-discrete model for dynamic fracture based on crack regularization, Int. J. Fract., 168, 133-143 (2011) · Zbl 1283.74055
[32] Pham, K.; Marigo, J.-J.; Maurini, C., The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models, J. Mech. Phys. Solids, 59, 6, 1163-1190 (2011) · Zbl 1270.74015
[33] Sicsic, P.; Marigo, J.-J., From gradient damage laws to Griffith’s theory of crack propagation, J. Elasticity, 113, 1, 55-74 (2013) · Zbl 1274.74436
[34] Marigo, J.-J.; Maurini, C.; Pham, K., An overview of the modelling of fracture by gradient damage models, Meccanica, 51, 12, 3107-3128 (2016) · Zbl 1374.74109
[35] Tanné, Erwan; Li, Tianyi; Bourdin, Blaise; Marigo, J.-J.; Maurini, Corrado, Crack nucleation in variational phase-field models of brittle fracture, J. Mech. Phys. Solids, 110, 80-99 (2018)
[36] Balay, Satish; Gropp, William D.; McInnes, Lois Curfman; Smith, Barry F., Efficient management of parallelism in object-oriented numerical software libraries, (Modern Software Tools for Scientific Computing (1997), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 163-202 · Zbl 0882.65154
[37] Balay, S.; Abhyankar, S.; Adams, M.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L. D.; Eijkhout, V.; Gropp, W.; Kaushik, D.; Knepley, M.; May, D.; Curfman McInnes, L.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B.; Zampini, S.; Zhang, H.; Zhang, H., PETSc Users Manual Revision 3.4Technical Report (Sep. 2013), Argonne National Laboratory (ANL): Argonne National Laboratory (ANL) Argonne, IL (United States)
[38] Balay, S.; Brown, J.; Buschelman, K.; Gropp, W. D.; Kaushik, D.; Knepley, M.; McInnes, L. C.; Smith, B.; Zhang, H., PETSc/Tao: Home Page (2013), URL https://www.mcs.anl.gov/petsc/
[39] Cherepanov, G. P., Crack propagation in a continuum, Prikl. Mat. Mekh., 31, 3, 476-488 (1967) · Zbl 0288.73078
[40] Leguillon, Dominique; Sanchez-Palencia, Enrique, Computation of Singular Solutions in Elliptic Problems and Elasticity (1987), John Wiley & Sons, Inc. · Zbl 0647.73010
[41] Hsueh, C. J.; Avellar, L.; Bourdin, B.; Ravichandran, G.; Bhattacharya, K., Stress fluctuation crack renucleation and toughening in layered materials, J. Mech. Phys. Solids (2018)
[42] Hossain, M. Z.; Hsueh, C. J.; Bourdin, B.; Bhattacharya, K., Effective toughness of heterogeneous media, J. Mech. Phys. Solids, 71, 1, 15-32 (2014), ISSN: 00225096, http://dx.doi.org/10.1016/j.jmps.2014.06.002
[43] Zehnder, Alan T., (Fracture Mechanics. Fracture Mechanics, Lecture Notes in Applied and Computational Mechanics, vol. 62 (2012), Springer: Springer Netherlands Dordrecht)
[44] Benzerga, A. A.; Besson, Jacques; Pineau, André, Anisotropic ductile fracture: Part I: Experiments, Acta Mater., 52, 15, 4623-4638 (2004)
[45] Hull, Derek, Fractography: Observing, Measuring and Interpreting Fracture Surface Topography (1999), Cambridge University Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.