×

New solutions for (1+1)-dimensional and (2+1)-dimensional Kaup–Kupershmidt equations. (English) Zbl 1259.35008

Summary: Using the exp-function method we obtain some new exact solutions for (1+1)-dimensional and (2+1)-dimensional Kaup-Kupershmidt (KK) equations. We show figures of some of the new solutions obtained here. We conclude that the exp-function method presents a wider applicability for handling nonlinear partial differential equations.

MSC:

35A25 Other special methods applied to PDEs
65N99 Numerical methods for partial differential equations, boundary value problems
35C05 Solutions to PDEs in closed form
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Biswas A., Milovic D., Ranasinghe A.: Solitary waves of Boussinesq equation in a power law media. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3738–3742 (2009) · Zbl 1221.35311 · doi:10.1016/j.cnsns.2009.02.021
[2] Biswas A., Milovic D.: Chiral solitons with Bohm potential by He’s variational principle. Phys. Atom. Nuclei 74(5), 781–783 (2011) · doi:10.1134/S1063778811050048
[3] Girgis L., Biswas A.: A study of solitary waves by He’s semi-inverse variational principle. Waves Random Compl Med. 21(1), 96–104 (2011) · Zbl 1274.76174 · doi:10.1080/17455030.2010.519128
[4] Triki H., Wazwaz A.M.: Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients. Phys. Lett. A 373, 2162–2165 (2009) · Zbl 1229.35232 · doi:10.1016/j.physleta.2009.04.029
[5] Wazwaz A.M.: New solitary wave solutions to the modified Kawahara equation. Phys. Lett. A 360, 588–592 (2007) · Zbl 1236.35142 · doi:10.1016/j.physleta.2006.08.068
[6] Wazwaz A.-M.: Compactons and solitary wave solutions for the Boussinesq wave equation and its generalized form. Appl. Math. Comput. 182(1), 529–535 (2006) · Zbl 1106.65092 · doi:10.1016/j.amc.2006.04.014
[7] Yildirim A., Mohyud-Din S.T.: A variational approach to soliton solutions of good Boussinesq equation. J. King Saud Univ. Sci. 22(4), 205–208 (2010) · doi:10.1016/j.jksus.2010.04.013
[8] Ma W.X., Maruno K.: Complexiton solutions of the Toda lattice equation. Phys. A 343, 219–237 (2004)
[9] Ma W.X.: Soliton, positon and negaton solutions to a Schrodinger self consistent source equation. J. Phys. Soc. Jpn. 72, 3017–3019 (2003) · Zbl 1133.81332 · doi:10.1143/JPSJ.72.3017
[10] Ma W.X.: Complexiton solutions of the Korteweg–de Vries equation with self consistent sources. Chaos Solitons Fractals 26, 1453–1458 (2005) · Zbl 1098.37064 · doi:10.1016/j.chaos.2005.03.030
[11] Ling L.H., Qiang L.X.: Exact Solutions to (2+1)-dimensional Kaup–Kupershmidt equation. Commun. Theor. Phys. 52, 795–800 (2009) · Zbl 1186.35175 · doi:10.1088/0253-6102/52/5/06
[12] Reyes E.G.: Nonlocal symmetries and the Kaup–Kupershmidt equation. J. Math. Phys. 46, 073507 (2005) · Zbl 1110.37052 · doi:10.1063/1.1939988
[13] Kupershmidt B.A.: A super Korteweg–de Vries equation:an integrable system. Phys. Lett. A 102, 213 (1994) · doi:10.1016/0375-9601(84)90693-5
[14] Zait R.A.: Bäcklund transformations, cnoidal wave and travelling wave solutions of the SK and KK equations. Chaos Solitons Fractals 15, 673 (2003) · Zbl 1032.35013 · doi:10.1016/S0960-0779(02)00162-5
[15] He J.H., Wu X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[16] Yıldırım A., Pınar Z.: Application of Exp-function method for nonlinear reaction-diffusion equations arising in mathematical biology. Comput. Math. Appl. 60, 1873–1880 (2010) · Zbl 1205.35325 · doi:10.1016/j.camwa.2010.07.020
[17] Mohyud-din S.T., Noor M.A., Noor K.I.: Exp-function method for solving higher-order boundary value problems. Bull. Inst. Math. Acad. Sinica (New Series) 4(2), 219–234 (2009) · Zbl 1175.65083
[18] Zhang S.: Exp-function method for solving Maccari’s system. Phys. Lett. A 371, 65–71 (2007) · Zbl 1209.65103 · doi:10.1016/j.physleta.2007.05.091
[19] He J.H., Abdou M.A.: New periodic solutions for nonlinear evolution equations using exp-function method. Chaos Solitons Fractals 34, 1421–1429 (2007) · Zbl 1152.35441 · doi:10.1016/j.chaos.2006.05.072
[20] Ma W.X., You Y.: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 357, 1753–1778 (2005) · Zbl 1062.37077 · doi:10.1090/S0002-9947-04-03726-2
[21] Ma W.X., Li C.X., He J.S.: A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal. Theory Methods Appl. 70, 4245–4258 (2009) · Zbl 1159.37425 · doi:10.1016/j.na.2008.09.010
[22] Ma W.X., Lee J.-H.: A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation. Chaos Solitons Fractals 42, 1356–1363 (2009) · Zbl 1198.35231 · doi:10.1016/j.chaos.2009.03.043
[23] Ma W.X., Huang T.W., Zhang Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scripta 82, 065003 (2010) · Zbl 1219.35209 · doi:10.1088/0031-8949/82/06/065003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.