×

Szegö-Weinberger type inequalities for symmetric domains with holes. (English) Zbl 1482.35141

Summary: Let \(\mu_2(\Omega)\) be the first positive eigenvalue of the Neumann Laplacian in a bounded domain \(\Omega \subset \mathbb{R}^N\). It was proved by Szegö for \(N=2\) and by Weinberger for \(N \geq 2\) that among all equimeasurable domains \(\mu_2(\Omega)\) attains its global maximum if \(\Omega\) is a ball. In the present work, we develop the approach of Weinberger in two directions. First, we refine the Szegö-Weinberger result for a class of domains of the form \(\Omega_{\mathrm{out}} \setminus \overline{\Omega}_{\mathrm{in}}\) which are either centrally symmetric or symmetric of order 2 (with respect to every coordinate plane \((x_i,x_j))\) by showing that \(\mu_2(\Omega_{\mathrm{out}} \setminus \overline{\Omega}_{\mathrm{in}}) \leq \mu_2(B_\beta \setminus \overline{B}_\alpha)\), where \(B_{\alpha}, B_{\beta}\) are balls centered at the origin such that \(B_{\alpha} \subset \Omega_{\mathrm{in}}\) and \(|\Omega_{\mathrm{out}}\setminus \overline{\Omega}_{\mathrm{in}}| =|B_{\beta}\setminus \overline{B}_{\alpha}|\). Second, we provide Szegö-Weinberger-type inequalities for higher eigenvalues by imposing additional symmetry assumptions on the domain. Namely, if \(\Omega_{\mathrm{out}} \setminus \overline{\Omega}_{\mathrm{in}}\) is symmetric of order 4, then we prove \(\mu_i(\Omega_{\mathrm{out}} \setminus \overline{\Omega}_{\mathrm{in}}) \leq \mu_i(B_\beta \setminus \overline{B}_\alpha)\) for \(i=3,\dots,N+2\), where we also allow \(\Omega_{\mathrm{in}}\) and \(B_{\alpha}\) to be empty. If \(N=2\) and the domain is symmetric of order 8, then the latter inequality persists for \(i=5\). Counterexamples to the obtained inequalities for domains outside of the considered symmetry classes are given. The existence and properties of nonradial domains with required symmetries in higher dimensions are discussed. As an auxiliary result, we obtain the nonradiality of the eigenfunctions associated to \(\mu_{N+2}(B_\beta \setminus \overline{B}_\alpha)\).

MSC:

35P15 Estimates of eigenvalues in context of PDEs
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
35B06 Symmetries, invariants, etc. in context of PDEs
35J25 Boundary value problems for second-order elliptic equations

References:

[1] D. Abele and A. Kleefeld, New numerical results for the optimization of Neumann eigenvalues, in Computational and Analytic Methods in Science and Engineering, C. Constanda, ed., Birkhäuser, Cham, 2020, pp. 1-20, https://doi.org/10.1007/978-3-030-48186-5_1. · Zbl 1448.65275
[2] T. V. Anoop and K. A. Kumar, On reverse Faber-Krahn inequalities, J. Math. Anal. Appl., 485 (2020), 123766, https://doi.org/10.1016/j.jmaa.2019.123766. · Zbl 1437.35516
[3] F. Antoneli, M. Forger, and P. Gaviria, Maximal subgroups of compact Lie groups, J. Lie Theory, 22 (2012), pp. 949-1024, http://www.heldermann.de/JLT/JLT22/JLT224/jlt22043.htm · Zbl 1261.22007
[4] P. R. Antunes and P. Freitas, Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians, J. Optim. Theory Appl., 154 (2012), pp. 235-257, https://doi.org/10.1007/s10957-011-9983-3. · Zbl 1252.90076
[5] M. S. Ashbaugh and R. D. Benguria, Universal bounds for the low eigenvalues of Neumann Laplacians in \(N\) dimensions, SIAM J. Math. Anal., 24 (1993), pp. 557-570. https://doi.org/10.1137/0524034. · Zbl 0796.35122
[6] S. Axler, P. Bourdon, and R. Wade, Harmonic Function Theory, 2nd ed., Springer, New York, 2001, https://doi.org/10.1007/978-1-4757-8137-3. · Zbl 0959.31001
[7] L. Brasco and G. De Philippis, Spectral inequalities in quantitative form, in Shape Optimization and Spectral Theory, A. Henrot, ed., De Gruyter Open, Warsaw, Poland, 2017, pp. 201-281. https://doi.org/10.1515/9783110550887-007. · Zbl 1373.49051
[8] L. Brasco and A. Pratelli, Sharp stability of some spectral inequalities, Geom. Funct. Anal., 22 (2012), pp. 107-135, https://doi.org/0.1007/s00039-012-0148-9. · Zbl 1241.47015
[9] R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume I, Interscience, New York, 1953, https://doi.org/10.1002/9783527617210. · Zbl 0051.28802
[10] D. Bucur and A. Henrot, Maximization of the second non-trivial Neumann eigenvalue, Acta Math., 222 (2019), pp. 337-361. https://doi.org/10.4310/ACTA.2019.v222.n2.a2. · Zbl 1423.35271
[11] D. Daners, Local singular variation of domain for semilinear elliptic equations, in Topics in Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl. 35, J. Escher and G. Simonett, eds., Birkhäuser, Basel, 1999, pp. 117-141. https://doi.org/10.1007/978-3-0348-8765-6_8. · Zbl 0928.35064
[12] C. Enache and G. A. Philippin, Some inequalities involving eigenvalues of the Neumann Laplacian, Math. Methods Appl. Sci., 36 (2013), pp. 2145-2153, https://doi.org/10.1002/mma.2743. · Zbl 1276.35121
[13] C. Enache and G. A. Philippin, On some isoperimetric inequalities involving eigenvalues of symmetric free membranes, ZAMM Z. Angew. Math. Mech., 95 (2015), pp. 424-430, https://doi.org/10.1002/zamm.201300211. · Zbl 1322.35101
[14] C. Enache and G. A. Philippin, On some inequalities for low eigenvalues of closed surfaces in \(\mathbb{R}^3\), Appl. Anal., 96 (2017), pp. 2516-2525, https://doi.org/10.1080/00036811.2016.1227968. · Zbl 1386.35282
[15] A. Girouard, N. Nadirashvili, and I. Polterovich, Maximization of the second positive Neumann eigenvalue for planar domains, J. Differential Geom., 83 (2009), pp. 637-662, https://doi.org/10.4310/jdg/1264601037. · Zbl 1186.35120
[16] B. Helffer and M. Sundqvist, On nodal domains in Euclidean balls, Proc. Amer. Math. Soc., 144 (2016), pp. 4777-4791, https://doi.org/10.1090/proc/13098. · Zbl 1362.35200
[17] J. Hersch, On symmetric membranes and conformal radius: Some complements to Pólya’s and Szegö’s inequalities, Arch. Ration. Mech. Anal., 20 (1965), pp. 378-390, https://doi.org/10.1007/BF00282359. · Zbl 0188.17202
[18] J. Hersch, Lower bounds for membrane eigenvalues by anisotropic auxillary problems, Appl. Anal., 3 (1973), pp. 241-245, https://doi.org/10.1080/00036817308839068. · Zbl 0299.73032
[19] E. K. Ifantis and P. D. Siafarikas, A differential equation for the zeros of Bessel functions, Appl. Anal., 20 (1985), pp. 269-281, https://doi.org/10.1080/00036818508839574. · Zbl 0553.33004
[20] J. B. Kennedy, A toy Neumann analogue of the nodal line conjecture, Arch. Math. (Basel), 110 (2018), pp. 261-271, https://doi.org/10.1007/s00013-017-1117-1. · Zbl 1391.35291
[21] Q. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differential Equations, 131 (1996), pp. 1-19, https://doi.org/10.1006/jdeq.1996.0154. · Zbl 0862.34020
[22] E. T. Kornhauser and I. Stakgold, A variational theorem for \(\nabla^2 u+ \lambda u= 0\) and its application, J. Math. Phys., 31 (1952), pp. 45-54, https://doi.org/10.1002/sapm195231145. · Zbl 0046.32303
[23] J. R. Kuttler, A new method for calculating TE and TM cutoff frequencies of uniform waveguides with lunar or eccentric annular cross section, IEEE Trans. Microwave Theory Techniques, 32 (1984), pp. 348-354, https://doi.org/10.1109/TMTT.1984.1132682.
[24] L. Li, On the second eigenvalue of the Laplacian in an annulus, Illinois J. Math., 51 (2007), pp. 913-925, https://doi.org/10.1215/ijm/1258131110. · Zbl 1155.35017
[25] L. Lorch and P. Szego, Bounds and monotonicities for the zeros of derivatives of ultraspherical Bessel functions, SIAM J. Math. Anal., 25 (1994), pp. 549-554, https://doi.org/10.1137/S0036141092231458. · Zbl 0805.33002
[26] N. Nadirashvili, Conformal maps and isoperimetric inequalities for eigenvalues of the Neumann problem, in Proceedings of the Ashkelon Workshop on Complex Function Theory, L. Zalcman, ed., AMS, Providence, RI, 1996, pp. 197-201. · Zbl 0890.35097
[27] C. Radin and L. Sadun, Subgroups of \(SO(3)\) associated with tilings, J. Algebra, 202 (1998), pp. 611-633, https://doi.org/10.1006/jabr.1997.7320. · Zbl 0911.20035
[28] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, 2nd ed., Springer-Verlag, Berlin, 2001, https://doi.org/10.1007/978-3-642-56579-3. · Zbl 0980.35180
[29] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Ration. Mech. Anal., 3 (1954), pp. 343-356, https://www.jstor.org/stable/24900293 · Zbl 0055.08802
[30] H. F. Weinberger, An isoperimetric inequality for the \(N\)-dimensional free membrane problem, J. Ration. Mech. Anal., 5 (1956), pp. 633-636, https://www.jstor.org/stable/24900219. · Zbl 0071.09902
[31] H. Y. Yee and N. F. Audeh, Cutoff frequencies of eccentric waveguides, IEEE Trans. Microwave Theory Techniques, 14 (1966), pp. 487-493, https://doi.org/10.1109/TMTT.1966.1126308.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.