×

Introduction to the special issue on breaking waves. (English) Zbl 1403.00029

From the text: This special issue comprises papers which were presented at the B’Waves workshops 2014 in Bordeaux, France and 2016 in Bergen, Norway. One of the reasons for initiating this series of dedicated workshops was the observed inadequacy of the current state of knowledge about wave breaking. While wave breaking is one the most ubiquitous and well known phenomena in the worlds oceans and rivers, our current understanding of why, how and when it happens is still limited.

MSC:

00B25 Proceedings of conferences of miscellaneous specific interest
76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Babanin, A., Breaking and Dissipation of Ocean Surface Waves, (2011), Cambridge University Press · Zbl 1217.86001
[2] Banner, M. L.; Peregrine, D. H., Wave breaking in deep water, Annu. Rev. Fluid Mech., 25, 1, 373-397, (1993)
[3] Duncan, J. H., Spilling breakers, Ann. Rev. Fluid Mech., 33, 519-547, (2001) · Zbl 0988.76011
[4] Kiger, K. T.; Duncan, J. H., Air entrainment mechanisms in plunging jets and breaking waves, Annu. Rev. Fluid Mech., 44, 563-596, (2012) · Zbl 1352.76026
[5] Lubin, P.; Chanson, H., Are breaking waves, bores, surges and jumps the same flow?, Environ. Fluid Mech., 17, 1, 47-77, (2017)
[6] Melville, W. K., The role of surface-wave breaking in air-sea interaction, Annu. Rev. Fluid Mech., 28, 1, 279-321, (1996)
[7] Peregrine, D. H., Breaking waves on beaches, Annu. Rev. Fluid Mech., 15, 1, 149-178, (1983)
[8] Perlin, M.; Choi, W.; Tian, Z., Breaking waves in deep an intermediate waters, Ann. Rev. Fluid Mech., 45, 115-145, (2013) · Zbl 1359.76066
[9] Cavaleri, L.; Alves, J. H.; Ardhuin, F.; Babanin, A.; Banner, M.; Belibassakis, K.; Benoit, M.; Donelan, M.; Groeneweg, J.; Herbers, T. H.C.; Hwang, P. A.E. M., Wave modelling-the state of the art, Progr. Oceanogr., 75, 4, 603-674, (2007)
[10] Blenkinsopp, C. E.; Chaplin, J. R., Void fraction measurements in breaking waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463, 3151-3170, (2007)
[11] Deike, L.; Pizzo, N.; Melville, W., Lagrangian transport by breaking surface waves, J. Fluid Mech., 829, 364-391, (2017)
[12] Iafrati, A., Energy dissipation mechanisms in wave breaking processes: spilling and highly aerated plunging breaking events, J. Geophys. Res., 116, C07024, (2011)
[13] Lubin, P.; Glockner, S., Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments, J. Fluid Mech., 767, 364-393, (2015)
[14] Pizzo, N. E.; Melville, W. K., Vortex generation by deep-water breaking waves, J. Fluid Mech., 734, 198-218, (2013) · Zbl 1294.76078
[15] Pizzo, N.; Deike, L.; Melville, W., Current generation by deep-water breaking waves, J. Fluid Mech., 803, 275-291, (2016)
[16] Wunsch, C.; Ferrari, R., Vertical mixing, energy, and the general circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281-314, (2004) · Zbl 1125.86313
[17] Bonmarin, P., Geometric properties of deep-water breaking waves, J. Fluid Mech., 209, 405-433, (1989)
[18] Rapp, R. J.; Melville, W. K., Laboratory measurements of deep-water breaking waves, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 331, 1622, 735-800, (1990)
[19] Hasselmann, K., On the non-linear energy transfer in a gravity-wave spectrum Part 1, General theory, J. Fluid Mech., 12, 4, 481-500, (1962) · Zbl 0107.21402
[20] Kinsman, B., Wind Waves, (1965), Prentice-Hall: Prentice-Hall Englewood Cliffs
[21] Babanin, A. V.; Young, I. R.; Banner, M. L., Breaking probabilities for dominant surface waves on water of finite constant depth, J. Geophys. Res.: Oceans, 106, C6, 11659-11676, (2001)
[22] Gemmrich, J. R.; Farmer, D. M., Near-surface turbulence in the presence of breaking waves, J. Phys. Oceanogr., 34, 1067-1086, (2004)
[23] Holthuijsen, L. H.; Herbers, T. H.C., Statistics of breaking waves observed as whitecaps in the open sea, J. Phys. Oceanogr., 16, 2, 290-297, (1986)
[24] Tian, Z.; Perlin, M.; Choi, W., Evaluation of a deep-water wave breaking criterion, Phys. Fluids, 20, (2008) · Zbl 1182.76762
[25] Wu, C. H.; Nepf, H. M., Breaking criteria and energy losses for three-dimensional wave breaking, J. Geophys. Res.: Oceans, 107, C10, (2002)
[26] Babanin, A.; Chalikov, D.; Young, I.; Savelyev, I., Predicting the breaking onset of surface water waves, Geophys. Res. Lett., 34, L07605, (2007)
[27] Stansell, P.; MacFarlane, C., Experimental investigation of wave breaking criteria based on wave phase speeds, J. Phys. Oceanogr., 32, 1269-1283, (2002)
[28] Bacigaluppi, P.; Ricchiuto, M.; Bonneton, P., Upwind stabilized finite element modelling of non-hydrostatic wave breaking and run-up, (2014), hal-00990002 · Zbl 1426.76216
[29] Itay, U.; Liberzon, D., Lagrangian kinematic criterion for the breaking of shoaling waves, J. Phys. Ocean., 47, 827-833, (2017)
[30] Grue, J.; Jensen, A.; Rusås, P. O.; Sveen, J. K., Properties of large-amplitude internal waves, J. Fluid Mech., 380, 257-278, (1999) · Zbl 0938.76512
[31] Phillips, O. M., The equilibrium range in the spectrum of wind-generated waves, J. Fluid Mech., 4, 4, 426-434, (1958) · Zbl 0080.19202
[32] Barthelemy, X.; Banner, M. L.; Peirson, W. L.; Fedele, F.; Allis, M.; Dias, F., On a unified breaking onset threshold for gravity waves in deep and intermediate depth water, J. Fluid Mech., 841, 463-488, (2018)
[33] Song, J. B.; Banner, M. L., On determining the onset and strength of breaking for deep water waves, Part I: Unforced irrotational wave groups, J. Phys. Oceanogr., 32, 2541-2558, (2002)
[34] Galvin, C. J., Breaker type classification on three laboratory beaches, J. Geoph. Res., 73, 3651-3659, (1968)
[35] Grilli, S. T.; Svendsen, I. A.; Subramanya, R., Breaking criterion and characteristics for solitary waves on slopes, J. Waterways Port Coast. Ocean Engrg., 123, 102-112, (1997)
[36] M.P. Tulin, M. Landrini, Breaking waves in the ocean and around ships, in: Twenty-Third Symposium on Naval Hydrodynamics, Office of Naval Research Bassin d’Essais des Carenes National Research Council, 2001.; M.P. Tulin, M. Landrini, Breaking waves in the ocean and around ships, in: Twenty-Third Symposium on Naval Hydrodynamics, Office of Naval Research Bassin d’Essais des Carenes National Research Council, 2001.
[37] Romero, L.; Lenain, L.; Melville, W. K., Observations of surface wave-current interaction, J. Phys. Oceanogr., 47, 615-632, (2017)
[38] Kirby, J. T.; Derakhti, M.; M, Short-crested wave breaking, Eur. J. Mech. B Fluids, 73, 100-111, (2019)
[39] Briganti, R.; Musumeci, R. E.; Bellotti, G.; Brocchini, M.; Foti, E., Boussinesq modelling of breaking waves: description of turbulence J, Geophys. Res. Oceans, 109, 7015, (2004)
[40] Favre, H., Ondes de Translation, (1935), Dunod: Dunod Paris
[41] Fedorov, A. V.; Melville, W. K., Nonlinear gravity-capillary waves with forcing and dissipation, J. Fluid Mech., 354, 1-42, (1998) · Zbl 0974.76017
[42] Duncan, J. H.; Philomin, V.; Behres, M.; Kimmel, J., The formation of a spilling breaker, Phys. Fluids., 6, S2, (1994)
[43] Longuet-Higgins, M. S.; Cokelet, E. D., The deformation of steep surface waves on water ll, Growth of normal-mode instabilities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 364, 1716, 1-28, (1978) · Zbl 0423.76015
[44] Tanaka, M., The stability of steep gravity waves, J. Phys. Soc. Japan, 52, 3047-3055, (1983) · Zbl 1143.83309
[45] Tanaka, M.; Dold, J. W.; Lewy, M.; Peregrine, D. H., Instability and breaking of a solitary wave, J. Fluid Mech., 185, 235-248, (1987) · Zbl 0633.76045
[46] Jillians, W. J., The superharmonic instability of Stokes waves in deep water, J. Fluid Mech., 204, 563-579, (1989)
[47] Longuet-Higgins, M. S.; Dommermuth, D. G., Crest instabilities of gravity waves, Part 3. Nonlinear development and breaking, J. Fluid Mech., 336, 33-50, (1997) · Zbl 0891.76039
[48] Bridges, T. J., Wave breaking and the surface velocity field for three-dimensional water waves, Nonlinearity, 22, 947-953, (2009) · Zbl 1170.76008
[49] McLean, J. W., Instabilities of finite amplitude gravity waves on water of finite depth, J. Fluid Mech., 114, 331-341, (1982) · Zbl 0494.76015
[50] Melville, W. K., The instability and breaking of deep-water waves, J. Fluid Mech., 115, 165-185, (1982)
[51] Francius, M.; Kharif, C., Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 561, 417-437, (2006) · Zbl 1098.76033
[52] Babanin, A. V.; Waseda, T.; Kinoshita, T.; Toffoli, A., Wave breaking in directional fields, J. Phys. Oceanogr., 41, 1, 145-156, (2011)
[53] Lubin, P.; Vincent, S.; Abadie, S.; Caltagirone, J. P., Three-dimensional large eddy simulation of air entrainment under plunging breaking waves, Coast. Engrg., 53, 631-655, (2006)
[54] Fringer, O. B.; Street, R. L., The dynamics of breaking progressive interfacial waves, J. Fluid Mech., 494, 319-353, (2003) · Zbl 1063.76013
[55] Schäffer, H. A.; Madsen, P. A.; Deigaard, R., A Boussinesq model for waves breaking in shallow water, Coast. Eng., 20, 185-202, (1993)
[56] Svendsen, I. A., Wave heights and set-up in a surf zone, Coast. Eng., 8, 4, 303-329, (1984)
[57] Kennedy, A. B.; Chen, Q.; Kirby, J. T.; Dalrymple, R. A., Boussinesq modeling of wave transformation, breaking, and runup. I: 1D, J. Waterway Port Coast. Ocean Eng., 126, 1, 39-47, (2000)
[58] Kirby, J. T.; Wei, G.; Chen, Q.; Kennedy, A. B.; Dalrymple, R. A., FUNWAVE 1.0: Fully Nonlinear Boussinesq Wave Model-Documentation and User’s ManualResearch Report NO. CACR-98-06, (1998)
[59] Bonneton, P., Modelling of periodic wave transformation in the inner surf zone, Ocean Eng., 34, 10, 1459-1471, (2007)
[60] Brocchini, M.; Dodd, N., Nonlinear shallow water equation modeling for coastal engineering, J. Waterway Port Coast. Ocean Eng., 134, 2, 104-120, (2008)
[61] Cienfuegos, R.; Barthélemy, E.; Bonneton, P., Wave-breaking model for boussinesq-type equations including roller effects in the mass conservation equation, J. Waterway Port Coast. Ocean Eng., 136, 1, 10-26, (2009)
[62] Kazolea, M.; Delis, A.; Synolakis, C., Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations, J. Comput. Phys., (2014) · Zbl 1349.76346
[63] Tonelli, M.; Petti, M., Simulation of wave breaking over complex bathymetries by a Boussinesq model, J. Hydr. Res., 49, 473-486, (2011)
[64] Tissier, M.; Bonneton, P.; Marche, F.; Chazel, F.; Lannes, D., A new approach to handle wave breaking in fully non-linear boussinesq models, Coast. Eng., 67, 54-66, (2012)
[65] P. Bonneton, A.G. Filippini, L. Arpaia, N. Bonneton, M. Ricchiuto, Conditions for tidal bore formation in convergent alluvial estuaries, Estuar. Coast. Shelf Sci., http://dx.doi.org/10.1016/j.ecss.2016.01.019; P. Bonneton, A.G. Filippini, L. Arpaia, N. Bonneton, M. Ricchiuto, Conditions for tidal bore formation in convergent alluvial estuaries, Estuar. Coast. Shelf Sci., http://dx.doi.org/10.1016/j.ecss.2016.01.019
[66] Longuet-Higgins, M. S., On wave breaking and the equilibrium spectrum of wind-generated waves, Proc. R. Soc. Lond. Ser. A, 310, 151-159, (1969)
[67] Phillips, O. M., Spectral and statistical properties of the equilibrium range in wind-generated gravity waves, J. Fluid Mech., 156, 505-531, (1985) · Zbl 0603.76013
[68] Yuan, Y.; Tung, C. C.; Huang, N. E., Statistical characteristics of breaking waves, (Wave Dynamics and Radio Probing of the Ocean Surface, (1986), Springer: Springer Boston, MA), 265-272
[69] Donelan, M. A.; Pierson, W. J., Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry, J. Geophys. Res.: Oceans, 92, C5, 4971-5029, (1987)
[70] Zakharov, V. E.; Korotkevich, A. O.; Pushkarev, A.; Resio, D., Coexistence of weak and strong wave turbulence in a swell propagation, Phys. Rev. Lett., 99, 16, (2007)
[71] Hasselmann, K., On the spectral dissipation of ocean waves due to white capping, Bound.-Lay. Meteorol., 6, 1-2, 107-127, (1974)
[72] Chang, K.-A.; Liu, P. F.L., Velocity, acceleration and vorticity under a breaking wave, Phys. Fluids, 10, 327-329, (1998)
[73] Jensen, A.; Pedersen, G. K.; Wood, D. J., An experimental study of wave run-up at a steep beach, J. Fluid Mech., 486, 161-188, (2003) · Zbl 1110.76003
[74] Diorio, J. D.; Liu, X.; Duncan, J. H., An experimental investigation of incipient spilling breakers, J. Fluid Mech., 633, 271-283, (2009) · Zbl 1183.76015
[75] Duncan, J. H.; Qiao, H.; Philomin, V.; Wenz, A., Gentle spilling breakers: crest profile evolution, J. Fluid Mech., 379, 191-222, (1999) · Zbl 0938.76505
[76] Kimmoun, O.; Branger, H., A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach, J. Fluid Mech., 588, 353-397, (2007) · Zbl 1141.76313
[77] Melville, K.; Véron, F.; White, C. J., The velocity field under breaking waves: coherent structures and turbulence, J. Fluid Mech., 454, 203-233, (2002) · Zbl 0987.76507
[78] Sutherland, P.; Melville, W. K., Field measurements of surface and near-surface turbulence in the presence of breaking waves, J. Phys. Oceanogr., 45, 943-965, (2015)
[79] Tsai, C. P., Examination of empirical formulas for wave shoaling and breaking on steep slopes, Ocean Eng., 32, 469-483, (2005)
[80] Iafrati, A., Numerical study of the effects of the breaking intensity on wave breaking flows, J. Fluid Mech., 622, 371-411, (2009) · Zbl 1165.76327
[81] Lin, P.; Liu, P. L.F., A numerical study of breaking waves in the surf zone, J. Fluid Mech., 359, 239-264, (1998) · Zbl 0916.76009
[82] Christensen, E. D.; Deigaard, R., Large eddy simulation of breaking waves, Coast. Eng., 42, 53-86, (2001)
[83] Guyenne, P.; Grilli, S., Numerical study of three-dimensional overturning waves in shallow water, J. Fluid Mech., 547, 361-388, (2006) · Zbl 1082.76019
[84] Xue, Zh., A two-phase flow model for three-dimensional breaking waves over complex topography, Proc. R. Soc. Lond. Ser. A, 471, (2015), (20 pages)
[85] Banner, M. L.; Barthelemy, X.; Fedele, F.; Allis, M.; Benetazzo, A.; Dias, F.; Peirson, W. L., Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior, Phys. Rev. Lett., 112, 11, (2014)
[86] Ma, G.; Shi, F.; Kirby, J. T., Shock-capturing non-hydrostatic model for fully dispersive surface wave processes, Ocean Modell., 43, 22-35, (2012)
[87] Zijlema, M.; Stelling, G.; Smit, P., SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters, Coast. Eng., 58, 992-1012, (2011)
[88] Buckley, M. P.; Véron, F., The turbulent airflow over wind generated surface waves, Eur. J. Mech. B Fluids, 73, 132-143, (2019)
[89] Filippini, A. G.; Arpaia, L.; Bonneton, P.; Ricchiuto, M., Modeling analysis of tidal bore formation in convergent estuaries, Eur. J. Mech. B Fluids, 73, 55-68, (2019)
[90] S. Gavrilyuk, V.; Liapidevskii, A.; Chesnokov, A., Interaction of a subsurface bubble layer with long internal waves, Eur. J. Mech. B Fluids, 73, 157-169, (2019)
[91] Hur, V. M., Shallow water models with constant vorticity, Eur. J. Mech. B Fluids, 73, 170-179, (2019)
[92] Iafrati, A.; De Vita, F.; Verzicco, R., Effects of the wind on the breaking of modulated wave trains, Eur. J. Mech. B Fluids, 73, 6-23, (2019)
[93] Jensen, A., Solitary wave impact on a vertical wall, Eur. J. Mech. B Fluids, 73, 69-74, (2019)
[94] Kazolea, M.; Filippini, A.; Ricchiuto, M.; Abadie, S.; Medina, M. M.; Morichon, D.; Journeau, C.; Marcer, R.; Pons, K.; LeRoy, S.; Pedreros, R., Wave propagation, breaking, and overtopping on a 2D reef: A comparative evaluation of numerical codes for tsunami modelling, Eur. J. Mech. B Fluids, 73, 122-131, (2019)
[95] Li, Y.; Smeltzer, B. K.; Ellingsen, S.Å., Transient wave resistance upon a real shear current, Eur. J. Mech. B Fluids, 73, 180-192, (2019)
[96] Lin, C.; Kao, M.-J.; Wong, W.-Y.; Shao, Y.-P.; Fu, C.-F.; Yuan, J.-M.; Raikar, R., Effect of leading waves on velocity distribution of undular bore traveling over sloping bottom, Eur. J. Mech. B Fluids, 73, 75-99, (2019)
[97] Lubin, P.; Kimmoun, O.; Véron, F.; Glockner, S., Discussion on instabilities in breaking waves: vortices, air-entrainment and droplet generation, Eur. J. Mech. B Fluids, 73, 144-156, (2019)
[98] Lucarelli, A.; Lugni, C.; Falchi, M.; Felli, M.; Brocchini, M., On a layer model for spilling breakers: A preliminary experimental analysis, Eur. J. Mech. B Fluids, 73, 24-47, (2019)
[99] Senthilkumar, A.; Kalisch, H., Wave breaking in the KdV equation on a flow with constant vorticity, Eur. J. Mech. B Fluids, 73, 48-54, (2019)
[100] Bjørkavåg, M.; Kalisch, H., Wave breaking in Boussinesq models for undular bores, Phys. Lett. A, 375, 1570-1578, (2011) · Zbl 1242.76019
[101] Brun, M. K.; Kalisch, H., Convective wave breaking in the KdV equation, Anal. Math. Phys., 8, 57-75, (2018) · Zbl 1390.35259
[102] Smith, L.; Kolaas, J.; Jensen, A.; Sveen, K., X-ray measurements of plunging breaking solitary waves, Eur. J. Mech. B Fluids, 73, 112-121, (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.