×

\(gl(\infty{})\) and geometric quantization. (English) Zbl 0735.58020

The authors’ abstract: ”An axiomatic approach to the approximation of infinite dimensional algebras is presented with examples illustrating the need for a rigorous treatment of this subject. Geometric quantization is employed to construct systematically \(su(N)\) approximations of diffeomorphism algebras which first appeared in the theory of relativistic membranes.
Reviewer: W.Mozgawa (Lublin)

MSC:

53D50 Geometric quantization
17B66 Lie algebras of vector fields and related (super) algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] See e.g. the contributions to and references in: Supermembranes and Physics in 2+1 Dimensions, 1989 Trieste Conference, Duff, M., Pope, C. N., Sezgin, E. (eds.), Singapore: World Scientific (1990)
[2] Goldstone, J.: unpublished
[3] Hoppe, J.: Quantum theory of a relativistic surface..., MIT PhD Thesis 1982, Elem. Part. Res. J. (Kyoto)83, 3 (1989/90)
[4] Fairlie, D., Fletcher, P., Zachos, C. N.: Trigonometric structure constants for new infinite algebras. Phys. Lett.B218, (1989), 203 · Zbl 0689.17018 · doi:10.1016/0370-2693(89)91418-4
[5] Hoppe, J.: Diff A T 2 and the curvature of some infinite dimensional manifolds. Phys. Lett.B215, 706 (1988) · doi:10.1016/0370-2693(88)90046-9
[6] Hoppe, J.: Diffeomorphism groups, Quantization, andSU(. Int. J. Mod. Phys.A4, 5235–5248 (1989) · Zbl 0707.17018 · doi:10.1142/S0217751X89002235
[7] de Wit, B., Marquard, U., Nicolai, H.: Area preserving diffeomorphisms and supermembrane Lorentz invariance. Commun. Math. Phys.128, 39–62 (1990) · Zbl 0702.58028 · doi:10.1007/BF02097044
[8] Kac, V. G.: Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press 1985 · Zbl 0574.17010
[9] Hoppe, J., Schaller, P.: Infinitely many Versions ofSU(. Phys. Lett.B237, 407 (1990) · doi:10.1016/0370-2693(90)91197-J
[10] Messiah, A.: Quantum Mechanics. Vol. II. Amsterdam: North Holland 1965 · Zbl 0102.42602
[11] Judd, B. R.: Operator techniques in atomic spectroscopie. New York: McGraw-Hill 1963
[12] Jacobson, N.: Basic Algebra Vol. II. San Francisco: Freeman and Company 1980 · Zbl 0441.16001
[13] Kadison, R. V., Ringrose, J. R.: Fundamentals of the theory of operator algebras Vol. II. Orlando: Academic Press 1986 · Zbl 0601.46054
[14] Arnold, V.: Sur la geometric différentielle... Ann. Inst. Fourier16, 1 319–361 (1966)
[15] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. I and Vol. II. New York: John Wiley 1969 · Zbl 0175.48504
[16] Schlichenmaier, M. An introduction to Riemann surfaces, algebraic curves and moduli spaces, SLN in Physics Vol.322, Berlin, Heidelberg, New York: Springer 1989 · Zbl 0683.14007
[17] Abraham, R., Marsden, J. E.: Foundations of Mechanics. Benjamin/Cummings, Reading 1978 · Zbl 0393.70001
[18] Woodhouse, N.: Geometric quantization. Oxford: Clarendon Press 1980 · Zbl 0458.58003
[19] Tuynman, G. M.: Generalized Bergman Kernels and Geometric Quantization. J. Math. Phys.28, 573–583 (1987) · Zbl 0616.58041 · doi:10.1063/1.527642
[20] Tuynman, G. M.: Quantization: towards a comparison between methods. J. Math. Phys.28, 2829–2840 (1987) · Zbl 0639.58035 · doi:10.1063/1.527681
[21] Wells, R. O.: Differential Analysis on Complex Manifolds. Berlin, Heidelberg, New York: Springer 1980 · Zbl 0435.32004
[22] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: John Wiley 1978 · Zbl 0408.14001
[23] Mumford, D.: Tata Lectures on Theta I, Boston: Birkhäuser 1983 · Zbl 0509.14049
[24] Floratos, E. G.: Spin wedge and vertex operator representations of trigonometric algebras... Phys. Lett.B232, 467–472 (1989) · doi:10.1016/0370-2693(89)90443-7
[25] Floratos, E. G., Iliopoulos, J.: A note on the classical symmetries of the closed Bosonic membrane. Phys. Lett.B201, 237 (1988) · doi:10.1016/0370-2693(88)90220-1
[26] Floratos, E. G., Iliopoulos, J., Tiktopoulos, G.: Phys. Lett.B217, 282 (1989)
[27] Floratos, E. G.: The Heisenberg-Weyl group on the \(\mathbb{Z}\) N {\(\times\)}\(\mathbb{Z}\) N discretized torus membrane. Phys. Lett.B228, 335 (1989) · doi:10.1016/0370-2693(89)91555-4
[28] Floratos, E. G.: Representations of the quantum groupGl q(2) for values ofq on the unit circle. Phys. Lett.B233, 395 (1989) · Zbl 1332.22014 · doi:10.1016/0370-2693(89)91329-4
[29] Berezin, F. A.: Quantization. Math. USSR Izv.8, 5, 1109–1165 (1974) · Zbl 0312.53049 · doi:10.1070/IM1974v008n05ABEH002140
[30] Berezin, F. A.: Quantization in complex symmetric spaces. Math. USSR Izv.9 2, 341–379 (1975) · Zbl 0324.53049 · doi:10.1070/IM1975v009n02ABEH001480
[31] Berezin, F. A.: General concept of quantization. Commun. Math. Phys.40, 153–174 (1975) · Zbl 1272.53082 · doi:10.1007/BF01609397
[32] Schwarz, A. S.: Sympletic, contact and superconformal geometry. Membranes and strings, prepprint IASSNS-HEP 90/12 (Jan. 90)
[33] Rawnsley, J.H.: Coherent States and Kähler manifolds. Quart. J. Math. Oxford(2)28, 403–415 (1977) · Zbl 0387.58002 · doi:10.1093/qmath/28.4.403
[34] Perelomov, A. M.: Generalized coherent states and their applications. Berlin, Heidelberg, New York: Springer 1986 · Zbl 0605.22013
[35] Rawnsley, J. H.: Talk presented at the Colloque International en l’honneur de Jean-Marie Souriau Géométrie symplectique et physique mathématique Aix-en-Provence, 11–15 juin 1990
[36] Cahen, M., Gutt, S., Rawnsley, J. H.: preprint Bruxelles and Warwick Univ., part I (to appear in J. Geom. and Phys.) and part II
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.