zbMATH — the first resource for mathematics

On some identities and generating functions for \(k\)-Pell sequences and Chebychev polynomials. (English) Zbl 1407.05240
Summary: In this paper, we introduce a new operator in order to derive some properties of homogeneous symmetric functions. By making use of the proposed operator, we give some new generating functions for \(k\)-Fibonacci numbers, \(k\)-Pell numbers and product of sequences and Chebyshev polynomials of second kind.

05E05 Symmetric functions and generalizations
05A15 Exact enumeration problems, generating functions
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
Full Text: Link
[1] A. Boussayoud, On Some Identities and Symmetric Functions for Balancing Numbers, Journal of New Theory. 23 (2018), 68-77.
[2] Kh. Boubellouta, A. Boussayoud and M. Kerada, Symmetric Functions for k-Fibonacci Numbers and Orthogonal Polynomials, Turkish Journal of Analysis and Number.6(3) (2018), 98-102.
[3] A. Boussayoud, S. Boughaba and M. Kerada, Generating Functions k-Fibonacci and kJacobsthal numbers at negative indices, Electron. J. Math. Analysis Appl. 6(2) (2018), 195-202. · Zbl 1380.05192
[4] A. Boussayoud, M. Chelgham and S. Boughaba, On Some Identities and Generating Functions for Mersenne Numbers and Polynomials, Turkish Journal of Analysis and Number.6(3) (2018), 93-97.
[5] A. Boussayoud, Symmetric functions for k-Pell Numbers at negative indices, Tamap Journal of Mathematics and Statistics.1 (2017), 1-8. · Zbl 1358.05303
[6] A. Boussayoud, M. Kerada and N. Harrouche, On the k-Lucas numbers and Lucas PolynoON SOME IDENTITIES AND GENERATING FUNCTIONS FOR K-PELL SEQUENCES AND CHEBYSHEV POLYNOMIALS13
[7] AT. Benjamin and JJ. Quinn, Proofs That Really Count: The Art of Combinatorial Proof, Mathematical Association of America, Washington, DC, 2003. · Zbl 1044.11001
[8] C. Bolat and H Kose, On the Properties of k-Fibonacci Numbers, Int. J. Contemp. Math. Sciences. 5 (2010), 1097-1105. · Zbl 1277.11011
[9] P. Catarino, On Some Identities and Generating Functions for k- Pell Numbers, Int. Journal of Math. Analysis. 7 (2013), 1877-1884. · Zbl 1285.11024
[10] P. Catarino and P. Vasco, On Some Identities and Generating Functions for k-Pell Lucas Sequences, Applied Mathematical Sciences. 7 (2013), 4867- 4873.
[11] J. Ercolano, Matrix Generators of Pell Sequences, Fibonacci Q.17 (1979), 71- 77. · Zbl 0399.10011
[12] A.F Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Q. 3 (1965), 161–176. · Zbl 0131.04103
[13] A.F Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J. 32 (1965), 437–446. · Zbl 0131.04104
[14] A.F. Horadam and J.M. Mahon, Pell and Pell-Lucas Polynomials, Fibonacci Q. 23 (1985), 7–20.
[15] S. Falcon and A. Plaza, On the Fibonaccik- numbers, Chaos, Sulutions & Fractals. 32 (2007), 1615-1624. · Zbl 1158.11306
[16] S. Falcon and A. Plaza, Thek- Fibonacci sequence and the Pascal 2-triangle, Chaos, Sulutions & Fractals. 33 (2008), 38-49. · Zbl 1152.11308
[17] S. Falcon and A. Plaza, Onk- Fibonacci sequences and Polynomials and their derivatives, Chaos, Sulutions & Fractals 39 (2009), 1005-1019. · Zbl 1197.11024
[18] S. Falcon, On the k-Lucas numbers, Int. J. Contemp. Math. Sciences. 6 (2011), 1039-1050. · Zbl 1277.11012
[19] H. Gokkaya and K. Uslu, On the properties of new families of Pell and Pell-Lucas numbers, Ars Comb. CXVII (2014), 311-318. · Zbl 1340.11015
[20] T.Mansour. A formula for the generating functions of powers of Horadam’s sequence, Australas. J. Comb. 30 (2004), 207–212. · Zbl 1053.05008
[21] E. Kiliç and D. Tasçi, The Generalized Binet Formula, Representation and Sums of the
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.