zbMATH — the first resource for mathematics

Finiteness conditions and cotorsion pairs. (English) Zbl 1362.18019
The authors consider the classes of finitely \(n\)-presented modules \(\mathcal{FP}_n\) and \(n\)-coherent rings and establish a characterization of \(n\)-coherent rings in terms of finitely \(n\)-presented modules.
Then, the relative homological algebra with respect to the class \(\mathcal{FP}_n\), from the injective and flat properties is studied to get the classes of modules \(\mathcal{FP}_n\)-Inj and \(\mathcal{FP}_n\)-Flat, respectively. Some of the presented results on this matter are adopted from D. Bravo, J. Gillespie and M. Hovey [“The stable module category of a general ring”, Preprint, arXiv:1405.5768] and J. Chen and N. Ding [Commun. Algebra 24, No. 10, 3211–3216 (1996; Zbl 0877.16010)].
At the end, the completeness of certain cotorsion pairs associated to the classes \(\mathcal{FP}_n\)-Inj and \(\mathcal{FP}_n\)-Flat is investigated.

18G25 Relative homological algebra, projective classes (category-theoretic aspects)
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
Full Text: DOI
[1] Bieri, Robert, Homological dimension of discrete groups, Queen Mary College Mathematics Notes, (1976), Mathematics Department, Queen Mary College London · Zbl 0357.20027
[2] Borceux, Francis, Handbook of categorical algebra. 1. basic category theory, Encyclopedia of Mathematics and Its Applications, vol. 50, (1994), Cambridge University Press Cambridge · Zbl 0803.18001
[3] Bourbaki, Nicolas, Elements of mathematics. commutative algebra, (1972), Hermann/Addison-Wesley Publishing Co. Paris/Reading, Mass., translated from the French · Zbl 0279.13001
[4] Bravo, D.; Gillespie, J.; Hovey, M., The stable module category of a general ring, (2014), preprint
[5] Brown, Kenneth S., Homological criteria for finiteness, Comment. Math. Helv., 50, 129-135, (1975) · Zbl 0302.18010
[6] Brown, Kenneth S., Cohomology of groups, Graduate Texts in Mathematics, vol. 87, (1994), Springer-Verlag New York, corrected reprint of the 1982 original
[7] Chen, Jianlong; Ding, Nanqing, On n-coherent rings, Commun. Algebra, 24, 10, 3211-3216, (1996) · Zbl 0877.16010
[8] Costa, D. L., Parameterizing families of non-Noetherian rings, Commun. Algebra, 22, 10, 3997-4011, (1994) · Zbl 0814.13010
[9] Dobbs, David E.; Kabbaj, Salah-Eddine; Mahdou, Najib, n-coherent rings and modules, (Commutative Ring Theory, Fès, 1995, Lecture Notes in Pure and Appl. Math., vol. 185, (1997), Dekker New York), 269-281 · Zbl 0947.13011
[10] Eklof, Paul C.; Trlifaj, Jan, How to make ext vanish, Bull. Lond. Math. Soc., 33, 1, 41-51, (2001) · Zbl 1030.16004
[11] Enochs, Edgar E.; Overtoun, M. G. Jenda, Relative homological algebra, vol. 1, de Gruyter Expositions in Mathematics, vol. 30, (2011), Walter de Gruyter GmbH & Co. KG Berlin · Zbl 1238.13001
[12] Fieldhouse, David J., Character modules, dimension and purity, Glasg. Math. J., 13, 144-146, (1972) · Zbl 0258.16028
[13] Glaz, Sarah, Commutative coherent rings, Lecture Notes in Mathematics, vol. 1371, (1989), Springer-Verlag Berlin · Zbl 0745.13004
[14] Göbel, Rüdiger; Trlifaj, Jan, Approximations and endomorphism algebras of modules, de Gruyter Expositions in Mathematics, vol. 41, (2006), Walter de Gruyter GmbH & Co. KG Berlin · Zbl 1121.16002
[15] Holm, Henrik; Jørgensen, Peter, Covers, precovers, and purity, Ill. J. Math., 52, 2, 691-703, (2008) · Zbl 1189.16007
[16] Maddox, B. H., Absolutely pure modules, Proc. Am. Math. Soc., 18, 155-158, (1967) · Zbl 0145.04601
[17] Mao, Lixin; Ding, Nanqing, Relative FP-projective modules, Commun. Algebra, 33, 5, 1587-1602, (2005) · Zbl 1082.16012
[18] Mao, Lixin; Ding, Nanqing, Envelopes and covers by modules of finite FP-injective and flat dimensions, Commun. Algebra, 35, 3, 833-849, (2007) · Zbl 1122.16007
[19] Mao, Lixin; Ding, Nanqing, On a new generalization of coherent rings, Publ. Math. (Debr.), 71, 1-2, 67-82, (2007) · Zbl 1136.16018
[20] Miller, Livia M., A theory of non-Noetherian Gorenstein rings, (2008), ProQuest LLC Ann Arbor, MI, Thesis (Ph.D.), The University of Nebraska - Lincoln
[21] Stenström, Bo, Coherent rings and FP-injective modules, J. Lond. Math. Soc. (2), 2, 323-329, (1970) · Zbl 0194.06602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.