zbMATH — the first resource for mathematics

A recursion formula for \(k\)-Schur functions. (English) Zbl 1207.05213
Summary: The Bernstein operators allow one to build recursively the Schur functions. We present a recursion formula for \(k\)-Schur functions at \(t=1\) based on combinatorial operators that generalize the Bernstein operators. The recursion leads immediately to a combinatorial interpretation for the expansion coefficients of \(k\)-Schur functions at \(t=1\) in terms of homogeneous symmetric functions.
05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory
Full Text: DOI arXiv
[1] Garvan, F.; Kim, D.; Stanton, D., Cranks and t-cores, Invent. math., 101, 1-17, (1990) · Zbl 0721.11039
[2] Hoffmann, P., Littlewood – richardson without algorithmically defined bijections, (), 101-107
[3] James, G.D.; Kerber, A., The representation theory of the symmetric group, (1981), Addison-Wesley Reading, MA
[4] Lam, T., Schubert polynomials for the affine Grassmannian, J. amer. math. soc., 21, 259-281, (2008) · Zbl 1149.05045
[5] T. Lam, L. Lapointe, J. Morse, M. Shimozono, Affine insertion and Pieri rules for the affine Grassmannian, Mem. Amer. Math. Soc., in press, math.CO/0609110 · Zbl 1208.14002
[6] Lapointe, L.; Lascoux, A.; Morse, J., Tableau atoms and a new Macdonald positivity conjecture, Duke math. J., 116, 103-146, (2003) · Zbl 1020.05069
[7] Lapointe, L.; Morse, J., Schur function analogs for a filtration of the symmetric function space, J. combin. theory ser. A, 101, 2, 191-224, (2003) · Zbl 1018.05101
[8] Lapointe, L.; Morse, J., Tableaux on \(k + 1\)-cores, reduced words for affine permutations, and k-Schur expansions, J. combin. theory ser. A, 112, 1, 44-81, (2005) · Zbl 1120.05093
[9] Lapointe, L.; Morse, J., A k-tableaux characterization of k-Schur functions, Adv. math., 213, 1, 183-204, (2007) · Zbl 1118.05096
[10] Lapointe, L.; Morse, J., Quantum cohomology and the k-Schur basis, Trans. amer. math. soc., 360, 2021-2040, (2008) · Zbl 1132.05060
[11] Lascoux, A., Ordering the affine symmetric group, (), 219-231 · Zbl 1065.20502
[12] Macdonald, I.G., Symmetric functions and Hall polynomials, (1995), Clarendon Press Oxford · Zbl 0487.20007
[13] Misra, K.C.; Miwa, T., Crystal base for the basic representation of \(U_q(\hat{\mathfrak{sl}}(n))\), Comm. math. phys., 134, 79-88, (1990) · Zbl 0724.17010
[14] Zelevinsky, A.V., Representations of finite classical groups: A Hopf algebra approach, Lecture notes in math., vol. 869, (1981) · Zbl 0465.20009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.