×

Computational methods for multiphase flow and reactive transport problems arising in subsurface contaminant remediation. (English) Zbl 0866.76041

Summary: A mathematical formulation and some numerical approximation techniques are described for a system of coupled partial differential and algebraic equations describing multiphase flow, transport and interactions of chemical species in the subsurface. A parallel simulator PARSIM has been developed based on these approximation techniques, and is used to study contaminant remediation strategies. Numerical results for a highly complex geochemistry problem involving strontium disposal in a pit at Oak Ridge National Laboratory are presented.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76T99 Multiphase and multicomponent flows
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
86A60 Geological problems

Software:

HLLE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arbogast, T.; Chilakapati, A.; Wheeler, M. F., A characteristic-mixed method for contaminant transport and miscible displacement, (Russell, E.; Brebbia, G.; Pindar, Computational Methods in Water Resources IX, Vol. 1: Numerical Methods in Water Resources (1992), Computational Mechanics Publications: Computational Mechanics Publications Southampton), 77-84
[2] T. Arbogast, C.N. Dawson, P.T. Keenan, M.F. Wheeler and I. Yotov, Enhanced cell centered finite differences for elliptic equations on general geometry, SIAM J. Sci Comp., to appear.; T. Arbogast, C.N. Dawson, P.T. Keenan, M.F. Wheeler and I. Yotov, Enhanced cell centered finite differences for elliptic equations on general geometry, SIAM J. Sci Comp., to appear. · Zbl 0947.65114
[3] Arbogast, T.; Dawson, C.; Moore, D.; Saaf, F.; San Soucie, C.; Wheeler, M. F.; Yotov, I., Validation of the PICS transport code, (Technical Report (1993), Department of Computational and Applied Mathematics, Rice University)
[4] Arbogast, T.; Dawson, C. N.; Wheeler, M. F., A parallel multiphase numerical model for subsurface contaminant transport with biodegradation kinetics, (Peters, A.; etal., Computational Methods in Water Resources X, Vol. 2 (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 1499-1506
[5] Arbogast, T.; Wheeler, M. F., A parallel numerical model for subsurface contaminant transport with biodegradation kinetics, (Whiteman, J. R., The Mathematics of Finite Elements and Applications (1994), Wiley: Wiley New York), 199-213 · Zbl 0828.76047
[6] Arbogast, T.; Wheeler, M. F., A characteristics-mixed finite element method for advection dominated transport problems, SIAM J. Numer. Anal., 32, 404-424 (1995) · Zbl 0823.76044
[7] Arbogast, T.; Wheeler, M. F.; Yotov, I., Logically rectangular mixed methods for groundwater flow and transport on general geometry, (Peters, A.; etal., Computational Methods in Water Resources X, Vol. 1 (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 149-156
[8] T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal., to appear.; T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal., to appear. · Zbl 0880.65084
[9] Baehr, A. L.; Hoag, G. E.; Marley, M. C., Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport, J. Contaminant Hydro., 4, 1-26 (1989)
[10] Bryant, S.; Schechter, R.; Lake, L., Mineral sequences in precipitation/dissolution waves, AIChE J., 33, 1271-1287 (1987)
[11] Chiang, C. Y.; Dawson, C. N.; Wheeler, M. F., Modeling of in situ biorestoration of organic compounds in groundwater, Transport Porous Media, 6, 667-702 (1991)
[12] Cowsar, L.; Mandel, J.; Wheeler, M. F., Balancing domain decomposition for cell-centered finite differences, Math Comput., 64, 989-1015 (1995) · Zbl 0828.65135
[13] Crow, W. L.; Anderson, E. R.; Minugh, E., Subsurface venting of vapors emenating from hydrocarbon product on ground water, Ground Water Monitoring Rev., VII, 51-57 (1987)
[14] Dawson, C. N., Godunov-mixed methods for advective flow problems in one space dimension, SIAM J. Numer. Anal., 28, 1282-1309 (1991) · Zbl 0741.65068
[15] Dawson, C. N., Godunov-mixed methods for advection-diffusion equations in multidimensions, SIAM J. Numer. Anal., 30, 1315-1332 (1993) · Zbl 0791.65062
[16] Dria, M.; Bryant, S.; Schechter, R.; Lake, L., Interacting precipitation/dissolution waves: The movement of inorganic contaminants in groundwater, Water Res. Res., 23, 2076-2090 (1987)
[17] Evans, J. C.; Bryce, R. W.; Bates, D. J.; Kemner, M. L., Hanford Site Ground-Water Surveillance for 1989, PNL-7396, Pacific Northwest Laboratory (1990), Richland, Washington
[18] Fall, E. W.; Pickens, W. E., In situ hydrocarbon extraction, A case study done by Converse Environmental Consultants, Pasadena, CA (1988)
[19] Glowinski, R.; Wheeler, M. F., Domain decomposition and mixed finite element methods for elliptic problems, (Glowinski, R.; Golub, G. H.; Meurant, G.; Periaux, J., Proc. 1st Internat. Symp. on Domain Decomposition Methods for Partial Differential Equations (1988), SIAM: SIAM Philadelphia), 144-172
[20] Hagood, M. C.; Rohay, V. J., 200 West area carbon tetrachloride expedited response action project plan, WHC-SD-EN-AP-046, Westinghouse Hanford Company (1991), Richland, Washington
[21] Herrling, B.; Stamm, J.; Buermann, W., Hydraulic circulation system for in situ bioreclamation and/or in situ remediation of strippable contamination, (Hinchee, R. E.; Olfenbuttel, R. F., In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation (1991), Butterworth-Heinemann: Butterworth-Heinemann Boston), 173-195
[22] Johnson, P. C.; Stanley, C. C.; Byers, D. L.; Benson, D. A.; Acton, M. A., Soil venting at a California site: field data reconciled with theory, (Report (1991), Shell Development, Westhollow Res. Ctr.,: Shell Development, Westhollow Res. Ctr., Houston, TX)
[23] Last, G. V.; Lenhard, R. J.; Bjornstad, B. N.; Evans, J. C.; Roberson, K. R.; Spane, F. A.; Amonette, J. E.; Rockhold, M. L., Characteristics of the volatile organic compound-arid integrated demonstration site, PNL-7866, Pacific Northwest Laboratory (1991), Richland, Washington
[24] Parker, J. C., Multiphase flow and transport in porous media, Rev. Geophys., 27, 311-328 (1989)
[25] Peaceman, D. W., Fundamentals of Numerical Reservoir Simulation (1977), Elsevier: Elsevier Amsterdam · Zbl 0204.28001
[26] Riley, R. G., Arid site characterization and technology assessment: volatile organic compounds-arid integrated demonstration, PNL-8862, Batalle, Pacific Northwest Laboratory (1993)
[27] Skeen, R. S.; Roberson, K. R.; Brouns, T. M.; Petersen, J. N.; Shouche, M., In-situ bioremediation of Hanford groundwater, (Proc. 1st Federal Environmental Restoration Conf.. Proc. 1st Federal Environmental Restoration Conf., Vienna, Virginia (1992))
[28] Thomas, J. M.; Lee, M. D.; Bedient, P. B.; Borden, R. C.; Canter, L. W.; Ward, C. H., Leaking underground storage tanks: remediation with emphasis on in situ biorestoration, Environmental Protection Agency 600/2-87, 008 (1987)
[29] Thornton, J.; Wootan, W. L., Venting for the removal of hydrocarbon vapors from gasoline contaminated soil, J. Environ. Sci. Health, A17, 31-44 (1982)
[30] Walsh, M.; Bryant, S.; Schechter, R.; Lake, L., Precipitation and dissolution of solids attending flow through porous media, AIChE J., 30, 317-328 (1984)
[31] Wheeler, M. F.; Dawson, C. N.; Bedient, P. B.; Chiang, C. Y.; Borden, R. C.; Rifai, H. S., Numerical simulation of microbial biodegradation of hydrocarbons in groundwater, (Proc. AGWSE/IGWMCH Conf. on Solving Ground Water Problems with Models (1987), National Water Wells Association), 92-108
[32] Yeh, G.; Tripathi, V., A model for simulating transport of reactive multispecies components: model development and demonstration, Water Res. Res., 27, 3075-3094 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.