×

A quasi-3D hyperbolic shear deformation theory for functionally graded plates. (English) Zbl 1331.74110

Summary: A quasi-3D hyperbolic shear deformation theory for functionally graded plates is developed. The theory accounts for both shear deformation and thickness-stretching effects by a hyperbolic variation of all displacements across the thickness, and satisfies the stress-free boundary conditions on the top and bottom surfaces of the plate without requiring any shear correction factor. The benefit of the present theory is that it contains a smaller number of unknowns and governing equations than the existing quasi-3D theories, but its solutions compare well with 3D and quasi-3D solutions. Equations of motion are derived from the Hamilton principle. Analytical solutions for bending and free vibration problems are obtained for simply supported plates. Numerical examples are presented to verify the accuracy of the present theory.

MSC:

74K20 Plates
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics

Software:

MUL2
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Nguyen T.K., Sab K., Bonnet G.: First-order shear deformation plate models for functionally graded materials. Compos. Struct. 83(1), 25–36 (2008) · doi:10.1016/j.compstruct.2007.03.004
[2] Zhao X., Lee Y.Y., Liew K.M.: Free vibration analysis of functionally graded plates using the element-free kp–Ritz method. J. Sound Vib. 319(3–5), 918–939 (2009) · Zbl 1228.74119 · doi:10.1016/j.jsv.2008.06.025
[3] Hosseini-Hashemi S., Rokni Damavandi Taher H., Akhavan H., Omidi M.: Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl. Math. Model. 34(5), 1276–1291 (2010) · Zbl 1186.74049 · doi:10.1016/j.apm.2009.08.008
[4] Hosseini-Hashemi S., Fadaee M., Atashipour S.R.: A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates. Int. J. Mech. Sci. 53(1), 11–22 (2011) · doi:10.1016/j.ijmecsci.2010.10.002
[5] Irschik H.: On vibrations of layered beams and plates. J. Appl. Math. Mech. 73(4–5), 34–45 (1993) · Zbl 0798.73032
[6] Nosier A., Fallah F.: Reformulation of Mindlin–Reissner governing equations of functionally graded circular plates. Acta Mech. 198(3–4), 209–233 (2008) · Zbl 1146.74031 · doi:10.1007/s00707-007-0528-7
[7] Saidi A.R., Baferani A.H., Jomehzadeh E.: Benchmark solution for free vibration of functionally graded moderately thick annular sector plates. Acta Mech. 219(3–4), 309–335 (2011) · Zbl 1303.74018 · doi:10.1007/s00707-011-0459-1
[8] Yang B., Ding H.J., Chen W.Q.: Elasticity solutions for a uniformly loaded rectangular plate of functionally graded materials with two opposite edges simply supported. Acta Mech. 207(3–4), 245–258 (2009) · Zbl 1173.74024 · doi:10.1007/s00707-008-0122-7
[9] Zenkour A.M., Allam M.N.M., Shaker M.O., Radwan A.F.: On the simple and mixed first-order theories for plates resting on elastic foundations. Acta Mech. 220(1–4), 33–46 (2011) · Zbl 1273.74177 · doi:10.1007/s00707-011-0453-7
[10] Reddy J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47(1–3), 663–684 (2000) · Zbl 0970.74041 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
[11] Ferreira A.J.M., Batra R.C., Roque C.M.C., Qian L.F., Martins P.A.L.S.: Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos. Struct. 69(4), 449–457 (2005) · doi:10.1016/j.compstruct.2004.08.003
[12] Ferreira A.J.M., Batra R.C., Roque C.M.C., Qian L.F., Jorge R.M.N.: Natural frequencies of functionally graded plates by a meshless method. Compos. Struct. 75(1–4), 593–600 (2006) · doi:10.1016/j.compstruct.2006.04.018
[13] Zenkour A.M.: Generalized shear deformation theory for bending analysis of functionally graded plates. Appl. Math. Model. 30(1), 67–84 (2006) · Zbl 1163.74529 · doi:10.1016/j.apm.2005.03.009
[14] Pradyumna S., Bandyopadhyay J.N.: Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation. J. Sound Vib. 318(1–2), 176–192 (2008) · doi:10.1016/j.jsv.2008.03.056
[15] Bodaghi M., Saidi A.R.: Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory. Appl. Math. Model. 34(11), 3659–3673 (2010) · Zbl 1201.74185 · doi:10.1016/j.apm.2010.03.016
[16] Hosseini-Hashemi S., Fadaee M., Atashipour S.R.: Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure. Compos. Struct. 93(2), 722–735 (2011) · doi:10.1016/j.compstruct.2010.08.007
[17] Xiang S., Jin Y.X., Bi Z.Y., Jiang S.X., Yang M.S.: A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates. Compos. Struct. 93(11), 2826–2832 (2011) · doi:10.1016/j.compstruct.2011.05.022
[18] Qian L.F., Batra R.C., Chen L.M.: Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method. Compos. Part B 35(6–8), 685–697 (2004) · doi:10.1016/j.compositesb.2004.02.004
[19] Carrera E., Brischetto S., Cinefra M., Soave M.: Effects of thickness stretching in functionally graded plates and shells. Compos. Part B 42(2), 123–133 (2011) · doi:10.1016/j.compositesb.2010.10.005
[20] Kant T., Swaminathan K.: Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Compos. Struct. 56(4), 329–344 (2002) · doi:10.1016/S0263-8223(02)00017-X
[21] Chen C.S., Hsu C.Y., Tzou G.J.: Vibration and stability of functionally graded plates based on a higher-order deformation theory. J. Reinf. Plast. Compos. 28(10), 1215–1234 (2009) · doi:10.1177/0731684408088884
[22] Talha M., Singh B.N.: Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 34(12), 3991–4011 (2010) · Zbl 1201.74044 · doi:10.1016/j.apm.2010.03.034
[23] Reddy J.N.: A general nonlinear third-order theory of functionally graded plates. Int. J. Aerosp. Lightweight Struct. 1(1), 1–21 (2011) · doi:10.3850/S201042861100002X
[24] Neves A.M.A., Ferreira A.J.M., Carrera E., Cinefra M., Roque R.M.N., Jorge C.M.C., Soares C.M.M.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. Part B 44(1), 657–674 (2013) · doi:10.1016/j.compositesb.2012.01.089
[25] Ferreira A.J.M., Carrera E., Cinefra M., Roque C.M.C., Polit O.: Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Compos. Part B 42(5), 1276–1284 (2011) · Zbl 1278.74187 · doi:10.1016/j.compositesb.2011.01.031
[26] Neves A.M.A., Ferreira A.J.M., Carrera E., Roque C.M.C., Cinefra M., Jorge R.M.N., Soares C.M.M.: A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Part B 43(2), 711–725 (2012) · doi:10.1016/j.compositesb.2011.08.009
[27] Neves A.M.A., Ferreira A.J.M., Carrera E., Cinefra M., Roque C.M.C., Jorge R.M.N., Soares C.M.M.: A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Struct. 94(5), 1814–1825 (2012) · doi:10.1016/j.compstruct.2011.12.005
[28] Mantari J.L., Guedes Soares C.: Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates. Compos. Struct. 94(8), 2561–2575 (2012) · doi:10.1016/j.compstruct.2012.02.019
[29] Soldatos K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3), 195–220 (1992) · Zbl 0850.73130 · doi:10.1007/BF01176650
[30] Xiang S., Wang K.M., Ai Y.T., Sha Y.D., Shi H.: Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories. Compos. Struct. 91(1), 31–37 (2009) · doi:10.1016/j.compstruct.2009.04.029
[31] Akavci S.: Two new hyperbolic shear displacement models for orthotropic laminated composite plates. Mech. Compos. Mater. 46(2), 215–226 (2010) · doi:10.1007/s11029-010-9140-3
[32] El Meiche N., Tounsi A., Ziane N., Mechab I., Adda Bedia E.A.: A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int. J. Mech. Sci. 53(4), 237–247 (2011) · doi:10.1016/j.ijmecsci.2011.01.004
[33] Zenkour A.: Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch. Appl. Mech. 77(4), 197–214 (2007) · Zbl 1161.74436 · doi:10.1007/s00419-006-0084-y
[34] Mantari J.L., Guedes Soares C.: A novel higher-order shear deformation theory with stretching effect for functionally graded plates. Compos. Part B 45(1), 268–281 (2013) · doi:10.1016/j.compositesb.2012.05.036
[35] Mantari J.L., Guedes Soares C.: Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory. Compos. Struct. 94(6), 1991–2000 (2012) · doi:10.1016/j.compstruct.2012.01.005
[36] Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973) · doi:10.1016/0001-6160(73)90064-3
[37] Vel S.S., Batra R.C.: Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound Vib. 272(3–5), 703–730 (2004) · doi:10.1016/S0022-460X(03)00412-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.