×

zbMATH — the first resource for mathematics

Alternatives to the least squares solution to Peelle’s pertinent puzzle. (English) Zbl 07042101
Summary: Peelle’s Pertinent Puzzle (PPP) was described in 1987 in the context of estimating fundamental parameters that arise in nuclear interaction experiments. In PPP, generalized least squares (GLS) parameter estimates fell outside the range of the data, which has raised concerns that GLS is somehow flawed and has led to suggested alternatives to GLS estimators. However, there have been no corresponding performance comparisons among methods, and one suggested approach involving simulated data realizations is statistically incomplete. Here we provide performance comparisons among estimators, introduce approximate Bayesian computation (ABC) using density estimation applied to simulated data realizations to produce an alternative to the incomplete approach, complete the incompletely specified approach, and show that estimation error in the assumed covariance matrix cannot always be ignored.

MSC:
62 Statistics
65 Numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Peelle, R.; ; Peelle’s Pertinent Puzzle: Oak Ridge, TN, USA 1987; .
[2] Burr, T.; Kawano, T.; Talou, P.; Hengartner, N.; Pan, P.; Defense of the Least Squares Solution to Peelle’s Pertinent Puzzle; Algorithms: 2011; Volume 4 ,28-39. · Zbl 07042096
[3] ; International Evaluation of Neutron Cross Section Standards: Vienna, Austria 2007; .
[4] Zhao, Z.; Perey, R.; ; The Covariance Matrix of Derived Quantities and Their Combination: Oak Ridge, TN, USA 1992; .
[5] Chiba, S.; Smith, D.; ; A Suggested Procedure for Resolving an Anomaly in Least-Squares Data Analysis Known as Peelle’s Pertinent Puzzle and the General Implications for Nuclear Data Evaluation: Argonne, IL, USA 1991; .
[6] Chiba, S.; Smith, D.; Some Comments on Peelle’s Pertinent Puzzle; Tokai, Japan 1994; ,5.
[7] Chiba, S.; Smith, D.; Impacts of Data Transformation on Least-Squares Solutions and Their Significance in Data Analysis and Evaluation; J. Nucl. Sci. Technol.: 1994; Volume 31 ,770-781.
[8] Hanson, K.; Kawano, T.; Talou, P.; Probabilistic Interpretation of Peelle’s Pertinent Puzzle; College Park, MD, USA 2005; .
[9] Sivia, D.; Data Analysis—A Dialogue With The Data; Advanced Mathematical and Computational Tools in Metrology VII: Singapore, Singapore 2006; ,108-118.
[10] Jones, C.; Finn, J.; Hengartner, N.; Regression with Strongly Correlated Data; J. Multivar. Anal.: 2008; Volume 99 ,2136-2153. · Zbl 1149.62057
[11] Finn, J.; Jones, C.; Hengartner, N.; ; Strong Nonlinear Correlations, Conditional Entropy, and Perfect Estimation: College Park, MD, USA 2007; .
[12] Kawano, T.; Matsunobu, H.; Murata, T.; Zukeran, A.; Nakajima, Y.; Kawai, M.; Iwamoto, O.; Shibata, K.; Nakagawa, T.; Ohsawa, T.; Baba, M.; Yoshida, T.; Simultaneous Evaluation of Fission Cross Sections of Uranium and Plutonium Isotopes for JENDL-3.3; J. Nucl. Sci. Technol.: 2000; Volume 37 ,327-334.
[13] Kawano, T.; Hanson, K.; Talou, P.; Chadwick, M.; Frankle, S.; Little, R.; Evaluation and Propagation of the Pu239 Fission Cross-Section Uncertainties Using a Monte Carlo Technique; Nucl. Sci. Eng.: 2006; Volume 153 ,1-7.
[14] Oh, S.; Monte Carlo Method for the Estimates in a Model Calculation; ; .
[15] Oh, S.; Seo, C.; ; Box-Cox Transformation for Resolving Peelle’s Pertinent Puzzle in Curve Fitting: Chicago, IL, USA 2004; .
[16] Christensen, R.; ; Plane Answers to Complex Questions, The Theory of Linear Models: New York, NY, USA 1999; ,23-25.
[17] Burr, T.; Frey, H.; Biased Regression: The Case for Cautious Application; Techometrics: 2005; Volume 47 ,284-296.
[18] Johnson, R.; Wichern, D.; ; Applied Multivariate Statistical Analysis: Upper Saddle River, NJ, USA 1988; . · Zbl 0663.62061
[19] R: A Language and Environment for Statistical Coputing; 2004; .
[20] Schmelling, M.; Averaging Correlated Data; Phys. Scr.: 1995; Volume 51 ,676-679.
[21] Diggle, P.; Gratton, R.; Monte Carlo Methods of Inference for Implicit Statistical Models; J. R. Stat. Soc. B: 1984; Volume 46 ,193-227. · Zbl 0561.62035
[22] Marjoram, P.; Molitor, J.; Plagnol, V.; Tavare, S.; Markov Chain Monte Carlo Without Likelihoods; Proc. Nat. Acad. Sci. USA: 2003; Volume 100 ,15324-15328.
[23] Plagnol, V.; Tavare, S.; Approximate Bayesian Computation and MCMC; Singapore, Singapore 2002; ,99-114. · Zbl 1041.65011
[24] Blum, M.; Approximate Bayesian Computation: A Nonparametric Perspective; J. Am. Stat. Assoc.: 2010; Volume 105 ,1178-1187. · Zbl 1390.62052
[25] Hastie, T.; Tibshirani, R.; Friedman, J.; ; The Elements of Statistical Learning: New York, NY, USA 2001; . · Zbl 0973.62007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.