×

zbMATH — the first resource for mathematics

Signal estimation using wavelet analysis of solution monitoring data for nuclear safeguards. (English) Zbl 1316.94022
Summary: Wavelets are explored as a data smoothing (or denoising) option for solution monitoring data in nuclear safeguards. In wavelet-smoothed data, the Gibbs phenomenon can obscure important data features that may be of interest. This paper compares wavelet smoothing to piecewise linear smoothing and local kernel smoothing, and illustrates that the Haar wavelet basis is effective for reducing the Gibbs phenomenon.
MSC:
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
65T60 Numerical methods for wavelets
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/TNS.2010.2054110 · doi:10.1109/TNS.2010.2054110
[2] DOI: 10.1006/acha.1996.0006 · Zbl 0856.42021 · doi:10.1006/acha.1996.0006
[3] DOI: 10.1016/j.nima.2011.02.078 · doi:10.1016/j.nima.2011.02.078
[4] Burr, Pattern recognition options to combine process monitoring and material accounting data in nuclear safeguards, Stat. Res. Lett. 1 pp 6– (2012)
[5] DOI: 10.1021/ie061615t · doi:10.1021/ie061615t
[7] DOI: 10.1177/0142331207086813 · doi:10.1177/0142331207086813
[8] DOI: 10.1080/18811248.2007.9711520 · doi:10.1080/18811248.2007.9711520
[9] Aigner, International target values 2000 for measurement uncertainties in safeguarding nuclear materials, J. Nucl. Mater. Manag. 30 (2002)
[10] DOI: 10.1080/00223131.2011.649076 · doi:10.1080/00223131.2011.649076
[11] Miller, Tank measurement data compression for solution Monitoring, J. Nucl. Mater. Manag. 28 pp 25– (1999)
[12] R Statistical Programming Languagewww.r-project.org
[14] DOI: 10.1080/01621459.1995.10476626 · doi:10.1080/01621459.1995.10476626
[15] DOI: 10.1093/biomet/81.3.425 · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[16] DOI: 10.1111/1467-9868.00071 · doi:10.1111/1467-9868.00071
[17] DOI: 10.1002/(SICI)1099-128X(199905/08)13:3/4<415::AID-CEM544>3.0.CO;2-8 · doi:10.1002/(SICI)1099-128X(199905/08)13:3/4<415::AID-CEM544>3.0.CO;2-8
[18] DOI: 10.1111/1467-9868.00151 · Zbl 0910.62031 · doi:10.1111/1467-9868.00151
[19] DOI: 10.1111/1467-9884.00216 · doi:10.1111/1467-9884.00216
[20] Nason, Wavelet Methods in Statistics with R (2008) · Zbl 1165.62033
[21] Boggess, A First Course in Wavelets with Fourier Analysis (2009) · Zbl 1185.42001
[23] Longo, Wavelet change detection in solution monitoring data for nuclear safegaurds, Axioms (2013) · Zbl 06335055 · doi:10.3390/axioms2020271
[24] Gibbs, Fouriers’s series, Nature 29 pp 300– (1898)
[25] Jerri, Advances in the Gibbs Phenomenon (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.