×

The cohomology of the moduli space of controllable linear systems. (English) Zbl 0768.93009

Summary: We explicitly describe, by generators and relations, the cohomology ring of the manifold \(\Sigma_{n,m}({\mathbf F})\) of controllable linear systems having \(m\) inputs and state-space dimension \(n\). It is shown that the cohomology ring of \(\Sigma_{n,m}({\mathbf F})\) is isomorphic to the invariant cohomology ring of a product of projective spaces. Estimates for the cup length of the cohomology ring are obtained.

MSC:

93B05 Controllability
93B27 Geometric methods
93C05 Linear systems in control theory
14D22 Fine and coarse moduli spaces
14F45 Topological properties in algebraic geometry
15A21 Canonical forms, reductions, classification
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alber, S. I.: On periodicity problems in the calculus of variations in the large, Amer. Math. Soc. Trans. (2) 14 (1960).
[2] Brockett, R. W.: Some geometric questions in the theory of linear systems, IEEE Trans. Aut. Control AC 21, (1976), 449-455. · Zbl 0332.93040 · doi:10.1109/TAC.1976.1101301
[3] Byrnes, C. I.: The moduli space for linear dynamical systems, C. F. Martin and R. Hermann (eds.) The 1976 Ames Research Conference on Geometric Control Theory Math. Sci. Press. · Zbl 0367.93014
[4] Byrnes, C. I. and Hurt, N. E.: The moduli of linear dynamical systems, Adv. in Math. Suppl. Series 4 (1978), 83-122. Translated into Russian in Mathematical Methods in Systems Theory, MIR Publishers, Moscow, 1979.
[5] Byrnes, C. I. and Helmke, U.: Intersection theory for linear systems, Proc. of the 25th Conference on Decision and Control, Athens, 1986, pp. 1944-1949.
[6] Chern, S. S.: Complex Manifolds Without Potential Theory, 2nd edn, Springer-Verlag, Berlin, 1979. · Zbl 0444.32004
[7] Clark, J. M. C.: The consistent selection of local coordinates in linear system identification, Proceedings of the Joint Automatic Control Conference, 1976, pp. 576-580.
[8] Delchamps, D. F.: The geometry of spaces of linear systems with an application to the identification problem, PhD Thesis, Harvard University, 1982.
[9] Delchamps, D. F.: Global structure of families of multivariable linear systems with an application to identification, Math. Systems Theory 18, (1985), 329-380. · doi:10.1007/BF01699476
[10] Delchamps, D. F. and Byrnes, C. I.: Critical point behaviour of objective functions defined on spaces of multivariable systems, Proc. of 21st IEEE Conference on Decision and Control, Orlando, 1982, pp. 937-943.
[11] Glover, K.: Some geometrical properties of linear systems with implications in identification, Proc. IFAC Congress, Cambridge, Mass, 1975.
[12] Hannan, E. J.: System identification, in M.Hazewinkel and J. C.Willems (eds.), Stochastic Systems: The Mathematics of Filtering and Identification and Applications, D. Reidel, Dordrecht, 1989, pp. 221-246.
[13] Hazewinkel, M.: Moduli and canonical forms for linear dynamical systems II: The topological case, Math. Systems Theory 10 (1977), 363-383. · Zbl 0396.54037 · doi:10.1007/BF01683285
[14] Hazewinkel, M.: Moduli and canonical forms for linear dynamical systems III: The algebraic-geometric case, C. F. Martin and R. Hermann (eds.), The 1976 Ames Research Conference on Geometric Control Theory, Math. Sci. Press, 1976. · Zbl 0339.93007
[15] Hazewinkel, M. and Kalman, R. E., On invariants, canonical forms and moduli for linear, constant, finite-dimensional dynamical systems, Lecture Notes Econ.-Math. Systems Theory 131, Springer Verlag, Berlin, 1976, pp. 48-60. · Zbl 0339.93007
[16] Helmke, U.: Zur Topologie des Raumes linearer Kontrollsysteme, PhD Thesis, Universität Bremen, Forschungsschwerpunkt Dynamische Systeme, Report 100, 1983.
[17] Helmke, U.: The topology of a moduli space for linear dynamical systems, Comm. Math. Helv. 60 (1985), 630-655. · Zbl 0613.93008 · doi:10.1007/BF02567437
[18] Helmke, U.: Topology of the moduli space for reachable linear dynamical systems: The complex case, Math. Systems Theory 19 (1986), 155-187. · Zbl 0624.93016 · doi:10.1007/BF01704912
[19] Helmke, U.: The cohomology of moduli spaces of linear dynamical systems, Habilitationsschrift, Regensburg University, 1990. · Zbl 0748.93018
[20] Hiller, H.: On the height of the first Stiefel-Whitney calss, Proc. Amer. Math. Soc. 79 (1980), 495-498. · Zbl 0433.57009 · doi:10.1090/S0002-9939-1980-0568001-8
[21] Hodge, W. V. D. and Pedoe, D.: Methods of Algebraic Geometry, Cambridge University Press. · Zbl 0055.38705
[22] James, I. M.: On category in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 341-348. · Zbl 0408.55008
[23] Kailath, T.: Linear Systems, Prentice-Hall, Englewood Cliffs, 1980. · Zbl 0454.93001
[24] Kalman, R. E.: Global structure of classes of linear dynamical systes, Nato/ASI on Geometric Methods in System Theory, London, 1971, preprint.
[25] Mukherjee, A. and Guha, S.: On generalized Stiefel manifolds, Indian J. Pure Appl. Math. 17, (1986), 890-894. · Zbl 0607.57026
[26] Segal, G.: The topology of spaces of rational functions, Acta Math. 143 (1979), 59-72. · Zbl 0427.55006 · doi:10.1007/BF02392088
[27] Stanley, R. P.: Some combinatorial aspects of the Schubert calculus, in Combinatoire et Représentation du Groupe Symmétrique, Lect. Notes in Math. 579, pp. 217-251.
[28] Willems, J. C.: From time series to linear systems, Automatica. · Zbl 0604.62090
[29] Willems, J. C.: Models for dynamics, Groningen University, research report. · Zbl 0685.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.