×

Stability analysis of high-order Hopfield-type neural networks based on a new impulsive differential inequality. (English) Zbl 1293.93634

Summary: This paper is devoted to studying the globally exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays. In the process of impulsive effect, nonlinear and delayed factors are simultaneously considered. A new impulsive differential inequality is derived based on the Lyapunov-Razumikhin method and some novel stability criteria are then given. These conditions, ensuring the global exponential stability, are simpler and less conservative than some of the previous results. Finally, two numerical examples are given to illustrate the advantages of the obtained results.

MSC:

93D20 Asymptotic stability in control theory
92B20 Neural networks for/in biological studies, artificial life and related topics
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahmad, S. and Stamova, I. (2008). Global exponential stability for impulsive cellular neural networks with time-varying delays, Nonlinear Analysis: Theory, Methods & Applications69(3): 786-795. · Zbl 1151.34061 · doi:10.1016/j.na.2008.02.067
[2] Cao, J. and Xiao, M. (2007). Stability and Hopf bifurcation in a simplified BAM neural network with two time delays, IEEE Transactions on Neural Networks 18(2): 416-430.
[3] Chen, T. (2001). Global exponential stability of delayed Hopfield neural networks, Neural Networks14(8): 977-980. · Zbl 02022167 · doi:10.1016/S0893-6080(01)00059-4
[4] Chua, L. and Yang, L. (1988a). Cellular neural networks: Applications, IEEE Transactions on Circuits and Systems35(10): 1273-1290.
[5] Chua, L. and Yang, L. (1988b). Cellular neural networks: Theory, IEEE Transactions on Circuits and Systems35(10): 1257-1272. · Zbl 0663.94022 · doi:10.1109/31.7600
[6] Civalleri, P., Gilli, M. and Pandolfi, L. (1993). On stability of cellular neural networks with delay, IEEE Transactions onCircuits and Systems I: Fundamental Theory and Applications40(3): 157-165. · Zbl 0792.68115 · doi:10.1109/81.222796
[7] Gopalsamy, K. and He, X. (1994). Stability in asymmetric Hopfield nets with transmission delays, Physica D: NonlinearPhenomena 76(4): 344-358. · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4
[8] Halanay, A. (1966). Differential Equations: Stability, Oscillations,Time Lags, Academic Press, New York, NY. · Zbl 0144.08701
[9] He, Y., Wang, Q., Wu, M. and Lin, C. (2006). Delay-dependent state estimation for delayed neural networks, IEEE Transactionson Neural Networks 17(4): 1077-1081.
[10] Ho, D., Liang, J. and Lam, J. (2006). Global exponential stability of impulsive high-order BAM neural networks with time-varying delays, Neural Networks 19(10): 1581-1590. · Zbl 1178.68417 · doi:10.1016/j.neunet.2006.02.006
[11] Huang, Z. and Yang, Q. (2010). Exponential stability of impulsive high-order cellular neural networks with time-varying delays, Nonlinear Analysis: Real World Applications11(1): 592-600. · Zbl 1180.93050 · doi:10.1016/j.nonrwa.2008.11.007
[12] Khadra, A., Liu, X. and Shen, X. (2009). Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses, IEEE Transactions on Automatic Control54(4): 923-928. · Zbl 1367.34084 · doi:10.1109/TAC.2009.2013029
[13] Li, C., Feng, G. and Huang, T. (2008). On hybrid impulsive and switching neural networks, IEEE Transactions onSystems, Man, and Cybernetics, Part B: Cybernetics38(6): 1549-1560.
[14] Li, X. (2010). Global exponential stability of delay neural networks with impulsive perturbations, Advances in DynamicalSystems and Applications 5(1): 107-122.
[15] Liu, X., Shen, X., Zhang, Y. and Wang, Q. (2007). Stability criteria for impulsive systems with time delay and unstable system matrices, IEEE Transactions on Circuits and SystemsI: Regular Papers 54(10): 2288-2298. · Zbl 1374.34284
[16] Liu, X., Teo, K. and Xu, B. (2005). Exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays, IEEE Transactions on Neural Networks16(6): 1329-1339.
[17] Liu, X. and Wang, Q. (2008). Impulsive stabilization of high-order Hopfield-type neural networks with time-varying delays, IEEE Transactions on NeuralNetworks 19(1): 71-79.
[18] Liu, Y., Zhao, S. and Lu, J. (2011). A new fuzzy impulsive control of chaotic systems based on T-S fuzzy model, IEEE Transactions on Fuzzy Systems 19(2): 393-398.
[19] Lou, X. and Cui, B. (2007). Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays, Journal of Mathematical Analysisand Applications 330(1): 144-158. · Zbl 1111.68104 · doi:10.1016/j.jmaa.2006.07.058
[20] Lu, J., Ho, D. and Cao, J. (2010). A unified synchronization criterion for impulsive dynamical networks, Automatica46(7): 1215-1221. · Zbl 1194.93090 · doi:10.1016/j.automatica.2010.04.005
[21] Lu, J., Ho, D., Cao, J. and Kurths, J. (2011). Exponential synchronization of linearly coupled neural networks with impulsive disturbances, IEEE Transactions on Neural Networks22(2): 329-336.
[22] Lu, J., Kurths, J., Cao, J., Mahdavi, N. and Huang, C. (2012). Synchronization control for nonlinear stochastic dynamical networks: Pinning impulsive strategy, IEEE Transactions on Neural Networks and Learning Systems23(2): 285-292.
[23] Raja, R., Sakthivel, R., Anthoni, S.M. and Kim, H. (2011). Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays, InternationalJournal of Applied Mathematics and Computer Science21(1): 127-135, DOI: 10.2478/v10006-011-0009-y. · Zbl 1221.93265 · doi:10.2478/v10006-011-0009-y
[24] Ren, F. and Cao, J. (2006). LMI-based criteria for stability of high-order neural networks with time-varying delay, NonlinearAnalysis: Real World Applications 7(5): 967-979. · Zbl 1121.34078 · doi:10.1016/j.nonrwa.2005.09.001
[25] Rong, L. (2005). LMI approach for global periodicity of neural networks with time-varying delays, IEEE Transactions onCircuits and Systems I: Regular Papers 52(7): 1451-1458. · Zbl 1374.34268
[26] Sakthivel, R., Raja, R. and Anthoni, S. (2011). Exponential stability for delayed stochastic bidirectional associative memory neural networks with markovian jumping and impulses, Journal of Optimization Theory and Applications150(1): 166-187. · Zbl 1226.93134 · doi:10.1007/s10957-011-9808-4
[27] Sakthivel, R., Samidurai, R. and Anthoni, S. (2010a). Asymptotic stability of stochastic delayed recurrent neural networks with impulsive effects, Journal of OptimizationTheory and Applications 147(3): 583-596. · Zbl 1211.93108 · doi:10.1007/s10957-010-9728-8
[28] Sakthivel, R., Samidurai, R. and Anthoni, S. (2010b). Exponential stability for stochastic neural networks of neutral type with impulsive effects, Modern Physics LettersB 24(11): 1099-1110. · Zbl 1195.82066 · doi:10.1142/S0217984910023141
[29] Sakthivel, R., Raja, R. and Anthoni, S. (2010c). Asymptotic stability of delayed stochastic genetic regulatory networks with impulses, Physica Scripta 82(5): 055009. · Zbl 1202.92031 · doi:10.1088/0031-8949/82/05/055009
[30] Stamova, I. and Ilarionov, R. (2010). On global exponential stability for impulsive cellular neural networks with time-varying delays, Computers & Mathematics with Applications59(11): 3508-3515. · Zbl 1197.34142 · doi:10.1016/j.camwa.2010.03.043
[31] Stamova, I., Ilarionov, R. and Vaneva, R. (2010). Impulsive control for a class of neural networks with bounded and unbounded delays, Applied Mathematics and Computation216(1): 285-290. · Zbl 1194.93192 · doi:10.1016/j.amc.2010.01.059
[32] Tian, Y., Yu, X. and Chua, L. (2004). Time-delayed impulsive control of chaotic hybrid systems, International Journal ofBifurcation and Chaos in Applied Sciences and Engineering14(3): 1091-1104. · Zbl 1129.93515 · doi:10.1142/S0218127404009612
[33] van den Driessche, P. and Zou, X. (1998). Global attractivity in delayed Hopfield neural network models, SIAM Journal onApplied Mathematics 58(6): 1878-1890. · Zbl 0917.34036 · doi:10.1137/S0036139997321219
[34] Wallis, G. (2005). Stability criteria for unsupervised temporal association networks, IEEE Transactions on Neural Networks16(2): 301-311.
[35] Wang, Q. and Liu, X. (2007). Exponential stability of impulsive cellular neural networks with time delay via Lyapunov functionals, Applied Mathematics and Computation194(1): 186-198. · Zbl 1193.34155 · doi:10.1016/j.amc.2007.04.112
[36] Weng, A. and Sun, J. (2009). Impulsive stabilization of second-order nonlinear delay differential systems, AppliedMathematics and Computation 214(1): 95-101. · Zbl 1175.34098 · doi:10.1016/j.amc.2009.03.071
[37] Wu, B., Liu, Y. and Lu, J. (2011). Impulsive control of chaotic systems and its applications in synchronization, ChinesePhysics B 20(5): 050508.
[38] Wu, B., Liu, Y. and Lu, J. (2012a). New results on global exponential stability for impulsive cellular neural networks with any bounded time-varying delays, Mathematical andComputer Modelling 55(3-4): 837-843. · Zbl 1255.93103 · doi:10.1016/j.mcm.2011.09.009
[39] Wu, B., Han, J. and Cai, X. (2012b). On the practical stability of impulsive differential equations with infinite delay in terms of two measures, Abstract and Applied Analysis2012: 434137. · Zbl 1246.93083 · doi:10.1155/2012/434137
[40] Xu, B., Liu, X. and Liao, X. (2003). Global asymptotic stability of high-order hopfield type neural networks with time delays, Computers & Mathematics with Applications45(10-11): 1729-1737. · Zbl 1045.37056 · doi:10.1016/S0898-1221(03)00151-2
[41] Xu, B., Liu, X. and Teo, K. (2009). Asymptotic stability of impulsive high-order hopfield type neural networks, Computers & Mathematics with Applications57(11-12): 1968-1977. · Zbl 1186.34075 · doi:10.1016/j.camwa.2008.10.002
[42] Xu, B., Xu, Y. and He, L. (2011). LMI-based stability analysis of impulsive high-order Hopfield-type neural networks, Mathematics and Computers in Simulation, DOI: 10.1016/j.matcom.2011.02.008. · doi:10.1016/j.matcom.2011.02.008
[43] Yang, T. and Chua, L. (1997). Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication, IEEE Transactionson Circuits and Systems I: Fundamental Theory andApplications 44(10): 976-988.
[44] Yang, Z. and Xu, D. (2005). Stability analysis of delay neural networks with impulsive effects, IEEE Transactions onCircuits and Systems II: Express Briefs 52(8): 517-521.
[45] Yang, Z. and Xu, D. (2007). Stability analysis and design of impulsive control systems with time delay, IEEE Transactionson Automatic Control 52(8): 1448-1454. · Zbl 1366.93276
[46] Yue, D., Xu, S. and Liu, Y. (1999). Differential inequality with delay and impulse and its applications to design robust control, Journal of Control Theory and Applications16(4): 519-524. · Zbl 0995.93063
[47] Zhang, H., Ma, T., Huang, G. and Wang, Z. (2010). Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control, IEEE Transactions on Systems, Man, and Cybernetics,Part B: Cybernetics 40(3): 831-844. · doi:10.1109/TSMCB.2009.2030506
[48] Zhang, Q., Yang, L. and Liao, D. (2011). Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays, InternationalJournal of Applied Mathematics and Computer Science21(4): 649-658, DOI: 10.2478/v10006-011-0051-9. · Zbl 1283.93239 · doi:10.2478/v10006-011-0051-9
[49] Zhang, Y. and Sun, J. (2010). Stability of impulsive linear hybrid systems with time delay, Journal of Systems Science andComplexity 23(4): 738-747. · Zbl 1214.93056 · doi:10.1007/s11424-010-8039-3
[50] Zheng, C., Zhang, H. and Wang, Z. (2011). Novel exponential stability criteria of high-order neural networks with time-varying delays, IEEE Transactions on Systems, Manand Cybernetics, Part B: Cybernetics 41(2): 486-496. · doi:10.1109/TSMCB.2010.2059010
[51] Zhou, J. and Wu, Q. (2009). Exponential stability of impulsive delayed linear differential equations, IEEE Transactions onCircuits and Systems II: Express Briefs 56(9): 744-748.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.