×

Turing patterns in a reaction-diffusion epidemic model. (English) Zbl 1381.35190

Summary: In this paper, we investigate the spatiotemporal dynamics of a reaction-diffusion epidemic model with zero-flux boundary conditions. The value of our study lies in two aspects: mathematically, by using maximum principle and the linearized stability theory, a priori estimates of the steady state system and the local asymptotic stability of positive constant solution are given. By using the implicit function theorem, the existence and nonexistence of nonconstant positive steady states are shown. Applying the bifurcation theory, the global bifurcation structure of nonconstant positive steady states is established. Epidemiologically, through numerical simulations, under the conditions of the existence of nonconstant positive steady states, we find that the smaller the space, the easier the pattern formation; the bigger the diffusion, the easier the pattern formation. These results are beneficial to disease control, that is, we must do our best to control the diffusion of the infectious to avoid disease outbreak.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35J57 Boundary value problems for second-order elliptic systems
35B36 Pattern formations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anita, S. and Capasso, V., A stabilizability problem for a reaction-diffusion system modelling a class of spatially-structured epidemic systems, Nonlinear Anal. Real World Appl.3(4) (2002) 453-464. · Zbl 1020.92027
[2] Berezovsky, F., Karev, G., Song, B. and Castillo-Chavez, C., A simple epidemic model with surprising dynamics, Math. Biosci. Engrg.2(1) (2005) 133-152. · Zbl 1061.92052
[3] Britton, N. F., Essential Mathematical Biology (Springer, New York, 2003). · Zbl 1037.92001
[4] Cai, Y., Kang, Y., Banerjee, M. and Wang, W., Complex dynamics of a host-parasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment, Nonlinear Anal. Real World Appl.40 (2018) 444-465. · Zbl 1379.92056
[5] Cai, Y., Kang, Y. and Wang, W., Global stability of the steady states of an epidemic model incorporating intervention strategies, Math. Biosci. Engrg.14(5-6) (2017) 1071-1089. · Zbl 1365.92116
[6] Cai, Y. and Wang, W., Stability and Hopf bifurcation of the stationary solutions to an epidemic model with cross-diffusion, Comput. Math. Appl.70(8) (2015) 1906-1920. · Zbl 1443.92174
[7] Cai, Y. and Wang, W., Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion, Nonlinear Anal. Real World Appl.30 (2016) 99-125. · Zbl 1339.35329
[8] Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal.8(2) (1971) 321-340. · Zbl 0219.46015
[9] Ducrot, A., Langlais, M. and Magal, P., Qualitative analysis and travelling wave solutions for the SI model with vertical transmission, Commun. Pure Appl. Anal.11 (2012) 97-113. · Zbl 1264.35254
[10] Fitzgibbon, W. E., Langlais, M. and Morgan, J. J., A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous spatial domain, SIAM J. Math. Anal.33(3) (2001) 570-588. · Zbl 1008.92031
[11] Fitzgibbon, W. E., Langlais, M. and Morgan, J. J., A reaction-diffusion system modeling direct and indirect transmission of diseases, Discrete Contin. Dynam. Syst. Ser. B4 (2004) 893-910. · Zbl 1058.35106
[12] Hilker, F. M., Langlais, M., Petrovskii, S. V. and Malchow, H., A diffusive SI model with Allee effect and application to FIV, Math. Biosci.206(1) (2007) 61-80. · Zbl 1124.92044
[13] Holmes, E. E., Lewis, M. A., Banks, J. E. and Veit, R. R., Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology75(1) (1994) 17-29.
[14] Li, S., Wu, J. and Dong, Y., Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differ. Equations259 (2015) 1990-2029. · Zbl 1323.35087
[15] Lou, Y. and Ni, W. M., Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations131(1) (1996) 79-131. · Zbl 0867.35032
[16] Malchow, H., Petrovskii, S. V. and Venturino, E., Spatiotemporal Patterns in Ecology and Epidemiology. Theory, Models and Simulation (CRC Press, 2008). · Zbl 1298.92004
[17] Neuhauser, C., Mathematical challenges in spatial ecology, Not. Amer. Math. Soc.48(11) (2001) 1304-1314. · Zbl 1128.92328
[18] Ni, W. M. and Tang, M., Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Trans. Amer. Math. Soc.357(10) (2005) 3953-3969. · Zbl 1074.35051
[19] Nishiura, Y., Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal.13(4) (1982) 555-593. · Zbl 0501.35010
[20] Pang, P. Y. H., Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh133(4) (2003) 919-942. · Zbl 1059.92056
[21] Peng, R., Shi, J. and Wang, M., On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity21(7) (2008) 1471-1488. · Zbl 1148.35094
[22] Peng, R. and Wang, M., Note on a ratio-dependent predator-prey system with diffusion, Nonlinear Anal. Real World Appl.7(1) (2006) 1-11. · Zbl 1085.92050
[23] Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal.7(3) (1971) 487-513. · Zbl 0212.16504
[24] Segel, L. and Jackson, J., Dissipative structure: An explanation and an ecological example, J. Theor. Biol.37 (1972) 545-559.
[25] Takagi, I., Point-condensation for a reaction-diffusion system, J. Differ. Equations61(2) (1986) 208-249. · Zbl 0627.35049
[26] Turing, A., The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London B237 (1952) 37-72. · Zbl 1403.92034
[27] Upadhyay, R. K., Wang, W. M. and Thakur, N. K., Spatiotemporal dynamics in a spatial plankton system, Math. Model. Nat. Phenom.5(5) (2011) 102-122. · Zbl 1197.92049
[28] Wang, W., Cai, Y., Wu, M., Wang, K. and Li, Z., Complex dynamics of a reaction-diffusion epidemic model, Nonlinear Anal. Real World Appl.22(5) (2012) 2240-2258. · Zbl 1327.92069
[29] Zeng, X. and Liu, Z., Non-constant positive steady states of a prey-predator system with cross-diffusions, J. Math. Anal. Appl.332(2) (2007) 989-1009. · Zbl 1168.35350
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.