×

Topology optimization using a natural neighbour meshless method combined with a bi-directional evolutionary algorithm. (English) Zbl 07478800

Summary: Due to recent developments in the additive manufacturing industry, topology optimization is nowadays a powerful computational tool that allows to design feasible lightweight components. Although the Finite Element Method (FEM) is the most applied discretization technique, meshless methods are currently established as accurate numerical methods with relevant advantages in several engineering fields. Nonetheless, the state-of-the-art of meshless methods in topology optimization is still scarce. This work develops the combination of a bi-direction structural optimization (BESO) algorithm with the Natural Neighbour Radial Point Interpolation Method (NNRPIM), a meshless method combining the natural neighbours geometric concept with the RPI shape functions. First, several benchmark examples are solved to evaluate the algorithm capability under several algorithm parameters. The proposed methodology is then implemented to design new automotive lightweight components. The results from the numerical applications demonstrate that the NNRPIM is a solid technique to be incorporated in optimization algorithms. Additionally, innovative automotive industry designs for additive manufacturing can be obtained using the presented approach.

MSC:

74-XX Mechanics of deformable solids
65-XX Numerical analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire, G.; Jouve, F.; Toader, A. M., A level-set method for shape optimization, C. R. Math., 334, 1125-1130 (2002) · Zbl 1115.49306
[2] Allaire, G.; Jouve, F.; Toader, A. M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[3] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 2, 117-127 (1998) · Zbl 0932.76067
[4] Belinha, J., Meshless Methods in Biomechanics - Bone Tissue Remodelling Analysis (2014), Springer: Springer Cham, Heidelberg, New York, Dordrecht, London · Zbl 1314.92001
[5] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 2, 229-256 (1994) · Zbl 0796.73077
[6] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 4, 193-202 (1989)
[7] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, comput, Methods Appl. Mech. Eng., 71, 2, 197-224 (1988) · Zbl 0671.73065
[8] Bourdin, B.; Chambolle, A., Design-dependent loads in topology optimization, ESAIM Control Optim. Calc. Var., 9, 19-48 (2003) · Zbl 1066.49029
[9] Braun, J.; Sambridge, M., A numerical method for solving partial differential equations on highly irregular evolving grids, Nature, 376, 655-660 (1995)
[10] Cuenot, F., CO2 emissions from new cars and vehicle weight in Europe; How the EU regulation could have been avoided and how to reach it?, Energy Policy, 37, 10, 3832-3842 (2009)
[11] Dapogny, C.; Estevez, R.; Faure, A.; Michailidis, G., Shape and topology optimization considering anisotropic features induced by additive manufacturing processes, Comput. Methods Appl. Mech. Engrg., 344, 626-665 (2019) · Zbl 1440.74289
[12] Dinis, L. M.J. S.; Natal Jorge, R. M.; Belinha, J., Analysis of 3D solids using the natural neighbour radial point interpolation method, Comput. Methods Appl. Mech. Engrg., 196, 2009-2028 (2007) · Zbl 1173.74469
[13] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[14] Golberg, M. A.; Chen, C. S.; Bowman, H., Some recent results and proposals for the use of radial basis functions in the BEM, Eng. Anal. Bound. Elem., 23, 4, 285-296 (1999) · Zbl 0948.65132
[15] Gomez, F.; Spencer, B. F., Topology optimization framework for structures subjected to stationary stochastic dynamic loads, Struct. Multidiscip. Optim., 59, 3, 813-833 (2019)
[16] Hardy, R. L., Theory and applications of the multiquadric-biharmonic method, Comput. Math. Appl., 19, 8-9, 163-208 (1990) · Zbl 0692.65003
[17] Heidari, A. A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H., Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97, 849-872 (2019)
[18] Huang, X.; Xie, Y. M., Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elem. Anal. Des., 43, 14, 1039-1049 (2007)
[19] Jia, H.; Beom, H. G.; Wang, Y.; Lin, S.; Liu, B., Evolutionary level set method for structural topology optimization, Comput. Struct., 89, 5-6, 445-454 (2011)
[20] Lee, K.; Ahn, K.; Yoo, J., A novel P-norm correction method for lightweight topology optimization under maximum stress constraints, Comput. Struct., 171, 18-30 (2016)
[21] S.-J. Lee, C.-K. Lee, J.-E. Bae, Evolution of 2D truss structures using topology optimization technique with meshless method, in: Proc. Int. Assoc. Shell Spat. Struct. Symp., 2009, pp. 1058-1065.
[22] Li, S.; Chen, H.; Wang, M.; Heidari, A. A.; Mirjalili, S., Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111, 300-323 (2020)
[23] Liu, G. R.; Gu, Y. T., A point interpolation method for two-dimensional solids, Internat. J. Numer. Methods Engrg., 50, 4, 937-951 (2001) · Zbl 1050.74057
[24] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: Diffuse approximation and diffuse elements, Comput. Mech., 10, 5, 307-318 (1992) · Zbl 0764.65068
[25] Picelli, R.; Townsend, S.; Brampton, C.; Norato, J.; Kim, H. A., Stress-based shape and topology optimization with the level set method, Comput. Methods Appl. Mech. Engrg., 329, 1-23 (2018) · Zbl 1439.74294
[26] Plocher, J.; Panesar, A., Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures, Mater. Des., 183 (2019)
[27] Querin, O. M.; Steven, G. P.; Xie, Y. M., Evolutionary structural optimisation (ESO) using a bidirectional algorithm, Eng. Comput., 15, 8, 1031-1048 (1998) · Zbl 0938.74056
[28] Querin, O. M.; Steven, G. P.; Xie, Y. M., Evolutionary structural optimisation using an additive algorithm, Finite Elem. Anal. Des., 34, 3-4, 291-308 (2000) · Zbl 0980.74051
[29] Querin, O. M.; Young, V.; Steven, G. P.; Xie, Y. M., Computational efficiency and validation of bi-directional evolutionary structural optimization, Comput. Methods Appl. Mech. Engrg., 189, 2, 559-573 (2000) · Zbl 1003.74059
[30] M.G.C. Resende, M.E. Silveira, T.A.C. Resende, Topologycal Optimization Applied To Design of an Automotive Hood, SAE Tech. Pap., Part F1270,, (October) 2016, http://dx.doi.org/10.4271/2016-36-0210.
[31] Rozvany, G. I.N.; Zhou, M.; Birker, T., Generalized shape optimization without homogenization, Struct. Optim., 4, 3-4, 250-252 (1992)
[32] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 2, 489-528 (2000) · Zbl 0994.74082
[33] Sukumar, N.; Moran, B.; Belytschko, T., The natural element method in solid mechanics, Internat. J. Numer. Methods Engrg., 43, 839-887 (1998) · Zbl 0940.74078
[34] Vicente, W. M.; Zuo, Z. H.; Pavanello, R.; Calixto, T. K.L.; Picelli, R.; Xie, Y. M., Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures, Comput. Methods Appl. Mech. Engrg., 301, 116-136 (2016) · Zbl 1425.74380
[35] Wallin, M.; Ristinmaa, M., Boundary effects in a phase-field approach to topology optimization, Comput. Methods Appl. Mech. Engrg., 278, 145-159 (2014) · Zbl 1423.74766
[36] Wang, G. G., Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems, Memetic Comput., 10, 2, 151-164 (2018)
[37] Wang, M. Y.; Chen, S.; Wang, X.; Mei, Y., Design of multimaterial compliant mechanisms using level-set methods, J. Mech. Des. Trans. ASME, 127, 5, 941-956 (2005)
[38] Wang, G. G.; Deb, S.; Cui, Z., Monarch butterfly optimization, Neural Comput. Appl., 31, 7, 1995-2014 (2019)
[39] Wang, J. G.; Liu, G. R., A point interpolation meshless method based on radial basis functions, Internat. J. Numer. Methods Engrg., 54, 11, 1623-1648 (2002) · Zbl 1098.74741
[40] White, D. A.; Arrighi, W. J.; Kudo, J.; Watts, S. E., Multiscale topology optimization using neural network surrogate models, Comput. Methods Appl. Mech. Engrg., 346, 1118-1135 (2019) · Zbl 1440.74319
[41] Wing Kam, L.; Jun, S.; Yi Fei, Z., Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids, 20, 8-9, 1081-1106 (1995) · Zbl 0881.76072
[42] Xia, L.; Zhang, L.; Xia, Q.; Shi, T., Stress-based topology optimization using bi-directional evolutionary structural optimization method, Comput. Methods Appl. Mech. Engrg., 333, 356-370 (2018) · Zbl 1440.74322
[43] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 5, 885-896 (1993)
[44] Yang, Y.; Chen, H.; Heidari, A. A.; Gandomi, A. H., Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177, February, Article 114864 pp. (2021)
[45] Yang, X. Y.; Xie, Y. M.; Steven, G. P.; Querin, O. M., Bi-directional evolutionary method for stiffness optimisation, AIAA J., 37, 11, 1483-1488 (1999)
[46] Zervas, E.; Lazarou, C., Influence of European passenger cars weight to exhaust CO2 emissions, Energy Policy, 36, 1, 248-257 (2008)
[47] Zhang, W.; Li, D.; Zhou, J.; Du, Z.; Li, B.; Guo, X., A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints, Comput. Methods Appl. Mech. Engrg., 334, Mmv, 381-413 (2018) · Zbl 1440.74330
[48] Zhang, W.; Yang, W.; Zhou, J.; Li, D.; Guo, X., Structural topology optimization through explicit boundary evolution, J. Appl. Mech. Trans. ASME, 84, 1, 1-10 (2017)
[49] Zheng, J.; Long, S.; Xiong, Y.; Guangyao, L., A topology optimization design for the continuum structure based on the meshless numerical technique, Comput. Model. Eng. Sci., 34, 2, 137-154 (2008) · Zbl 1232.74126
[50] Zhou, M.; Rozvany, G. I.N., The COC algorithm, part II: Topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Eng., 89, 1-3, 309-336 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.