zbMATH — the first resource for mathematics

The relationships between equilibria and positive solutions of certain nonlinear elliptic systems. (English) Zbl 0884.35032
Author’s abstract: Let \(M(u,v)=0\), \(N(u,v)=0\) define two distinct phase curves \(\Gamma_1\), \(\Gamma_2\) in the \((u,v)\)-phase plane. This paper presents results on the relationships among the positive equilibria, the phase curves, and the existence of positive solutions to the PDE system \[ \Delta u+uM(u,v)=0, \quad \Delta v+vN(u,v)=0 \quad \text{in } \Omega \subset \mathbb{R}^n \] under Dirichlet boundary conditions, where \(\Omega\) is a bounded domain and \(M,N\) are monotone functions.

35J55 Systems of elliptic equations, boundary value problems (MSC2000)
35J60 Nonlinear elliptic equations
92D25 Population dynamics (general)
Full Text: DOI
[1] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 620-709, (1976) · Zbl 0345.47044
[2] Berestycki, H.; Lions, P. L., Some applications of the method of super and subsolutions, Lecture Notes in Math., 782, (1980), p. 16-41
[3] Blat, J.; Brown, K. J., Bifurcation of steady-state solutions in predator – prey and competition systems, Proc. Roy. Soc. Edinburgh Sect. A, 97, 21-34, (1984) · Zbl 0554.92012
[4] Brown, P. N., Decay to uniform states in ecological interactions, SIAM J. Appl. Math., 38, 22-37, (1980) · Zbl 0511.92019
[5] A. Cañada, J. L. Gámez, Prey – predator systems without restrictions on the sign of the birthrate of the predator species, Proceedings of the Third International Conference on Math Population Dynamics
[6] Cantrell, R. S.; Cosner, C., On the uniqueness and stability of positive solutions in the lotka – volterra competition model with diffusion, Houston J. Math., 15, 341-361, (1989) · Zbl 0721.92025
[7] Cantrell, R. S.; Cosner, C.; Hutson, V., Permanence in ecological systems with spatial heterogeneity, Proc. Roy. Soc. Edinburgh Sect. A, 123, 533-559, (1993) · Zbl 0796.92026
[8] Conway, E. D.; Gardner, R.; Smoller, J., Stability and bifurcation of steady state solutions for predator – prey equations, Adv. in Appl. Math., 3, 288-334, (1982) · Zbl 0505.35047
[9] Conway, E. D.; Smoller, J., Global analysis of a class of predator – prey equations, SIAM J. Appl. Math., 46, 630-642, (1986) · Zbl 0608.92016
[10] Dancer, E. N., On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284, 729-743, (1984) · Zbl 0524.35056
[11] Dancer, E. N., On the existence and uniqueness of positive solutions for cometing species models with diffusion, Trans. Amer. Math. Soc., 326, 829-859, (1991) · Zbl 0769.35016
[12] DeMottoni, P.; Rothe, F., Convergence to homogeneous equilibrium state for generalized volterra – lotka systems with diffusion, SIAM J. Appl. Math., 37, 648-663, (1979) · Zbl 0425.35055
[13] C. Eilbeck, J. E. Furter, J. López-Gómez, Coexistence in the competition model with diffusion, J. Differential Equations
[14] Ghoreishi, A.; Logan, R., Positive solutions of a class of biological models in a heterogeneous environment, Bull. Austral. Math. Soc., 44, 79-94, (1991) · Zbl 0735.35051
[15] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 209-243, (1979) · Zbl 0425.35020
[16] Gui, C.; Lou, Y., Uniqueness and nonuniqueness of coexistence states in the lotka – volterra competition model, Comm. Pure Appl. Math., 47, 1571-1594, (1994) · Zbl 0829.92015
[17] Keller, C.; Lui, R., Existence of steady-state solutions to predator – prey equations in a heterogeneous environment, J. Math. Anal. Appl., 123, 306-323, (1987) · Zbl 0682.35057
[18] Korman, P.; Leung, A., On the existence and uniqueness of positive steady-states in the volterra – lotka ecological models with diffusion, Appl. Anal., 26, 145-160, (1987) · Zbl 0639.35026
[19] Kufner, A., Weighted Sobolev Spaces, (1986), Wiley New York · Zbl 0632.46027
[20] Leung, A. W., Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineering, (1989), Kluwer Academic Norwell · Zbl 0691.35002
[21] Li, L., Coexistence theorems of steady states for predator – prey interacting systems, Trans. Amer. Math. Soc., 305, 143-166, (1988) · Zbl 0655.35021
[22] Li, L., Global positive coexistence of a nonlinear elliptic biological interacting model, Math. Biosci., 97, 1-15, (1989) · Zbl 0698.92022
[23] Li, L.; Ghoreishi, A., On positive solutions of general nonlinear elliptic symbiotic interacting systems, Appl. Anal., 40, 281-295, (1991) · Zbl 0757.35023
[24] Li, L.; Liu, Y., Spectral and nonlinear effects in certain elliptic systems of three variables, SIAM J. Math. Anal., 24, 480-498, (1993) · Zbl 0779.35041
[25] Lions, J. L.; Magenes, E., Non-homogeneous Boundary Value Problems and Applications, (1972), Springer-Verlag New York · Zbl 0227.35001
[26] López-Gómez, J.; Pardo, R., Existence and uniqueness for some competition models with diffusions, C. R. Acad. Sci. Paris Sér. I Math., 313, 933-938, (1991) · Zbl 0741.92018
[27] Lui, R., Positive solutions of an elliptic system arising from a model in evolutionary ecology, J. Math. Biol., 29, 239-250, (1991) · Zbl 0741.92012
[28] McKenna, P. J.; Walter, W., On the Dirichlet problem for elliptic systems, Appl. Anal., 21, 207-224, (1986) · Zbl 0593.35042
[29] Mimura, M.; Tabata, M.; Hosono, Y., Multiple solutions of two point boundary value problems of Neumann type with small parameter, SIAM J. Math. Anal., 11, 613-631, (1980) · Zbl 0438.34014
[30] Pao, C. V., Nonlinear Parabolic and Elliptic Equations, (1992), Plenum New York · Zbl 0780.35044
[31] W. Ruan, W. Feng, 1995, On the fixed point index and multiple steady-state solutions of reaction – diffusion system, Differential Integral Equations, 2, 371, 391 · Zbl 0815.35017
[32] Ruan, W.; Pao, C. V., Asymptotic behavior and positive solutions of a chemical reaction diffusion system, J. Math. Anal. Appl., 169, 157-178, (1992) · Zbl 0799.35122
[33] Smoller, J., Shock Waves and Reaction-Diffusion Equations, (1994), Springer-Verlag · Zbl 0807.35002
[34] Zhou, L.; Pao, C. V., Asymptotic behavior of a competition – diffusion system in population dynamics, Nonlinear Anal., 6, 1163-1184, (1982) · Zbl 0522.92017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.