×

Educing the source mechanism associated with downstream radiation in subsonic jets. (English) Zbl 1275.76185

Summary: This work belongs to the ongoing debate surrounding the mechanism responsible for low-angle sound emission from subsonic jets. The flow, simulated by large eddy simulation [C. Bogey and C. Bailly, Comput. Fluids 35, No. 10, 1344–1358 (2006; Zbl 1171.76372)], is a Mach 0.9 jet with Reynolds number, based on the exit diameter, of \(4\times 10^{5}\). A methodology is implemented to educe, explore and model the flow motions associated with low-angle sound radiation. The eduction procedure, which is based on frequency-wavenumber filtering of the sound field and subsequent conditional analysis of the turbulent jet, provides access to space- and time-dependent (hydrodynamic) pressure and velocity fields. Analysis of these shows the low-angle sound emission to be underpinned by dynamics comprising space and time modulation of axially coherent wavepackets: temporally localized energization of wavepackets is observed to be correlated with the generation of high-amplitude acoustic bursts. Quantitative validation is provided by means of a simplified line-source ansatz [A. V. G. Cavalieri et al., J. Sound Vib. 330, 4474–4492 (2011)]. The dynamic nature of the educed field is then assessed using linear stability theory (LST). The educed pressure and velocity fields are found to compare well with LST: the radial structures of these match the corresponding LST eigenfunctions; the axial evolutions of their fluctuation energy are consistent with the LST amplification rates; and the relative amplitudes of the pressure and velocity fluctuations, which are educed independently of one another, are consistent with LST.

MSC:

76Q05 Hydro- and aero-acoustics
76G25 General aerodynamics and subsonic flows

Citations:

Zbl 1171.76372
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1017/S002211209900467X · Zbl 0946.76030 · doi:10.1017/S002211209900467X
[2] DOI: 10.1063/1.2204060 · doi:10.1063/1.2204060
[3] DOI: 10.1016/j.ijheatfluidflow.2006.02.008 · doi:10.1016/j.ijheatfluidflow.2006.02.008
[4] Cordier, Intl J. Numer. Meth. Fluids 63 pp 269– (2010)
[5] DOI: 10.1007/s00162-005-0005-7 · Zbl 1177.76154 · doi:10.1007/s00162-005-0005-7
[6] DOI: 10.1017/S0022112001003512 · Zbl 1008.76029 · doi:10.1017/S0022112001003512
[7] DOI: 10.1016/j.compfluid.2005.04.008 · Zbl 1177.76372 · doi:10.1016/j.compfluid.2005.04.008
[8] DOI: 10.1017/S0022112078000877 · doi:10.1017/S0022112078000877
[9] DOI: 10.1017/S0022112082000196 · Zbl 0493.76011 · doi:10.1017/S0022112082000196
[10] DOI: 10.1017/S0022112008004096 · Zbl 1163.76046 · doi:10.1017/S0022112008004096
[11] DOI: 10.1017/S0022112078002670 · doi:10.1017/S0022112078002670
[12] DOI: 10.1017/S0022112075001966 · Zbl 0312.76051 · doi:10.1017/S0022112075001966
[13] DOI: 10.1260/1475-472X.9.1-2.123 · doi:10.1260/1475-472X.9.1-2.123
[14] DOI: 10.1017/jfm.2012.247 · Zbl 1246.76005 · doi:10.1017/jfm.2012.247
[15] DOI: 10.1017/S0022112001004803 · Zbl 1097.76563 · doi:10.1017/S0022112001004803
[16] DOI: 10.1016/0376-0421(84)90005-8 · doi:10.1016/0376-0421(84)90005-8
[17] Adrian, Courses and Lectures-International Centre for Mechanical Sciences pp 145– (1996)
[18] DOI: 10.1063/1.3517297 · Zbl 06421196 · doi:10.1063/1.3517297
[19] DOI: 10.1063/1.863130 · doi:10.1063/1.863130
[20] DOI: 10.1098/rsta.1984.0024 · Zbl 0589.76071 · doi:10.1098/rsta.1984.0024
[21] Adrian, Coherent Structures of Turbulent Boundary Layers, vol. 22 pp 2065– (1978)
[22] DOI: 10.1016/j.jsv.2011.04.007 · doi:10.1016/j.jsv.2011.04.007
[23] DOI: 10.1175/1520-0477(1998)079&lt;0061:APGTWA&gt;2.0.CO;2 · doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
[24] DOI: 10.1016/0022-460X(72)90451-8 · doi:10.1016/0022-460X(72)90451-8
[25] Adrian, Turbulence in Liquids: Proceedings of the Fourth Biennial Symposium on Turbulence in Liquids pp 322– (1977)
[26] DOI: 10.1016/j.jsv.2011.04.018 · doi:10.1016/j.jsv.2011.04.018
[27] DOI: 10.1080/14685240600928472 · doi:10.1080/14685240600928472
[28] DOI: 10.1017/S0022112094004040 · doi:10.1017/S0022112094004040
[29] DOI: 10.1016/0022-460X(80)90416-2 · doi:10.1016/0022-460X(80)90416-2
[30] DOI: 10.1017/S002211200700612X · Zbl 1116.76073 · doi:10.1017/S002211200700612X
[31] DOI: 10.1017/S0022112008001833 · Zbl 1151.76356 · doi:10.1017/S0022112008001833
[32] Jordan, J. Fluid Mech. 611 pp 175– (2008)
[33] DOI: 10.1017/S0022112080000195 · Zbl 0437.76053 · doi:10.1017/S0022112080000195
[34] DOI: 10.1017/S0022112084000124 · Zbl 0543.76109 · doi:10.1017/S0022112084000124
[35] DOI: 10.1007/s00348-007-0395-y · doi:10.1007/s00348-007-0395-y
[36] DOI: 10.1017/S0022112084000112 · Zbl 0543.76108 · doi:10.1017/S0022112084000112
[37] Jordan, Annu. Rev. Fluid Mech. 45 (2013) · Zbl 1359.76257 · doi:10.1146/annurev-fluid-011212-140756
[38] DOI: 10.1017/S0022112081000608 · doi:10.1017/S0022112081000608
[39] DOI: 10.1017/S0022112006001613 · Zbl 1104.76023 · doi:10.1017/S0022112006001613
[40] DOI: 10.1063/1.864048 · Zbl 0524.76066 · doi:10.1063/1.864048
[41] DOI: 10.1017/S0022112008000803 · Zbl 1175.76025 · doi:10.1017/S0022112008000803
[42] DOI: 10.1063/1.2472507 · Zbl 1146.76419 · doi:10.1063/1.2472507
[43] Sirovich, Q. Appl. Math. 45 pp 561– (1987) · Zbl 0676.76047 · doi:10.1090/qam/910462
[44] DOI: 10.1063/1.857396 · doi:10.1063/1.857396
[45] DOI: 10.1017/S0022112010004672 · Zbl 1225.76264 · doi:10.1017/S0022112010004672
[46] DOI: 10.1017/jfm.2011.401 · Zbl 1241.76203 · doi:10.1017/jfm.2011.401
[47] DOI: 10.1017/jfm.2012.70 · Zbl 1250.76142 · doi:10.1017/jfm.2012.70
[48] DOI: 10.1098/rsta.2008.0049 · Zbl 1153.76413 · doi:10.1098/rsta.2008.0049
[49] DOI: 10.2514/3.60978 · doi:10.2514/3.60978
[50] DOI: 10.1016/j.jsv.2005.10.012 · doi:10.1016/j.jsv.2005.10.012
[51] DOI: 10.1260/147547209787548903 · doi:10.1260/147547209787548903
[52] DOI: 10.1063/1.1569919 · Zbl 1186.76178 · doi:10.1063/1.1569919
[53] DOI: 10.1260/1475-472X.9.4-5.533 · doi:10.1260/1475-472X.9.4-5.533
[54] DOI: 10.1017/S0022112078000415 · doi:10.1017/S0022112078000415
[55] DOI: 10.1016/S0142-727X(00)00021-7 · doi:10.1016/S0142-727X(00)00021-7
[56] DOI: 10.1146/annurev.fl.24.010192.002143 · doi:10.1146/annurev.fl.24.010192.002143
[57] Druault, Intl J. Numer. Meth. Fluids 62 pp 906– (2010)
[58] DOI: 10.1017/S0022112076002590 · doi:10.1017/S0022112076002590
[59] DOI: 10.2514/2.1611 · doi:10.2514/2.1611
[60] DOI: 10.1017/S0022112099005200 · Zbl 0995.76030 · doi:10.1017/S0022112099005200
[61] DOI: 10.1080/14685240701656121 · doi:10.1080/14685240701656121
[62] DOI: 10.1017/S0022112071001745 · doi:10.1017/S0022112071001745
[63] DOI: 10.1007/s00348-005-0948-x · doi:10.1007/s00348-005-0948-x
[64] DOI: 10.1017/S0022112090003299 · Zbl 0708.76116 · doi:10.1017/S0022112090003299
[65] DOI: 10.1260/147547209787548921 · doi:10.1260/147547209787548921
[66] DOI: 10.1017/S0022112076002176 · Zbl 0338.76021 · doi:10.1017/S0022112076002176
[67] DOI: 10.1017/S0022112077001700 · doi:10.1017/S0022112077001700
[68] DOI: 10.1115/1.3607624 · doi:10.1115/1.3607624
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.