×

Stochastic linear modes in a turbulent channel flow. (English) Zbl 1461.76313

Summary: This study is focused on the prediction of coherent structures, propagating within a turbulent channel flow. We propose a derivation of the linearised problem based on a stochastic formulation of the Navier-Stokes equations. It consists in considering the transport of quantities by a resolved velocity (i.e. solution of the model) perturbed by a Brownian motion which models the unresolved turbulent fluctuations over the time-averaged field, here thought of as the underlying background turbulence. The associated linearised model, considering the mean velocity profile as given, predicts linear solutions evolving within a corrected mean velocity field and perturbed by modelled background turbulence. Two ways to define the statistics of the Brownian motion are proposed and compared: one based on full simulation data, and the second, data free, based on preliminary predictions from resolvent analysis. The technique is applied on turbulent channel flows at friction Reynolds numbers \(Re_\tau =180\) and \(Re_\tau =550\), and predictions are compared with direct numerical simulation results. We show that the principal components of an ensemble of solutions of this stochastic linearised system are able to represent the leading spectral proper orthogonal decomposition modes with a similar accuracy to optimal responses coming from resolvent analysis with an eddy-viscosity model at scales where strong production occurs. For the other scales, receiving energy by nonlinear redistribution, the present strategy improves the prediction. Moreover, the second mode is systematically well predicted over all scales. This behaviour is understood by the ability of the stochastic modelling to model positive and negative inter-scale energy transfers through stochastic diffusion and random stochastic transport, while the eddy-viscosity term in resolvent analysis is purely diffusive.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

channelflow
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Abreu, L.I., Cavalieri, A.V.G., Schlatter, P., Vinuesa, R. & Henningson, D.S.2020aResolvent modelling of near-wall coherent structures in turbulent channel flow. Intl J. Heat Fluid Flow85, 108662. · Zbl 1460.76445
[2] Abreu, L.I., Cavalieri, A.V.G., Schlatter, P., Vinuesa, R. & Henningson, D.S.2020bSpectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows. J. Fluid Mech.900, A11. · Zbl 1460.76445
[3] Barkley, D.2006Linear analysis of the cylinder wake mean flow. Europhys. Lett. (EPL)75 (5), 750-756.
[4] Bauer, W., Chandramouli, P., Chapron, B., Li, L. & Mémin, E.2020aDeciphering the role of small-scale inhomogeneity on geophysical flow structuration: a stochastic approach. J. Phys. Oceanogr.50 (4), 983-1003.
[5] Bauer, W., Chandramouli, P., Li, L. & Mémin, E.2020bStochastic representation of mesoscale eddy effects in coarse-resolution barotropic models. Ocean Model.151, 1-50.
[6] Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L.2016Conditions for validity of mean flow stability analysis. J. Fluid Mech.798, 485-504. · Zbl 1422.76070
[7] Brynjell-Rahkola, M., Tuckerman, L.S., Schlatter, P. & Henningson, D.S.2017Computing optimal forcing using Laplace preconditioning. Commun. Comput. Phys.22 (5), 1508-1532. · Zbl 1488.76100
[8] Cavalieri, A.V.G., Jordan, P. & Lesshafft, L.2019Wave-packet models for jet dynamics and sound radiation. Appl. Mech. Rev.71 (2), 020802.
[9] Cavalieri, A.V.G., Rodriguez, D., Jordan, P., Colonius, T. & Gervais, Y.2013Wavepackets in the velocity field of turbulent jets. J. Fluid Mech.730, 559-592. · Zbl 1291.76280
[10] Cess, R.D.1958 A survey of the literature on heat transfer in turbulent tubeflow. Research Report No. 8-0529-R24.
[11] Chandramouli, P., Heitz, D., Laizet, S. & Mémin, E.2018Coarse large-eddy simulations in a transitional wake flow with flow models under location uncertainty. Comput. Fluids168, 170-189. · Zbl 1390.76139
[12] Chandramouli, P., Mémin, E. & Heitz, D.20204D large scale variational data assimilation of a turbulent flow with a dynamics error model. J. Comput. Phys.412, 109446. · Zbl 1436.76010
[13] Chandramouli, P., Mémin, E., Heitz, D. & Fiabane, L.2019Fast 3D flow reconstructions from 2D cross-plane observations. Exp. Fluids60 (2), 1-27.
[14] Chapron, B., Dérian, P., Mémin, E. & Resseguier, V.2018Large scale flows under location uncertainty: a consistent stochastic framework. Q. J. R. Meteorol. Soc.144 (710), 251-260.
[15] Chevalier, M., Hœpffner, J., Bewley, T.R. & Henningson, D.S.2006State estimation in wall-bounded flow systems. Part 2. Turbulent flows. J. Fluid Mech.552, 167-187. · Zbl 1134.76353
[16] Del Álamo, J.C. & Jiménez, J.2003Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids15 (6), L41-L44. · Zbl 1186.76136
[17] Del Álamo, J.C. & Jiménez, J.2006Linear energy amplification in turbulent channels. J. Fluid Mech.559, 205-213. · Zbl 1095.76021
[18] Dergham, G., Sipp, D. & Robinet, J.-Ch.2013Stochastic dynamics and model reduction of amplifier flows: the backward facing step flow. J. Fluid Mech.719, 406-430. · Zbl 1284.76317
[19] Farrell, B.F. & Ioannou, P.J.1993Stochastic forcing of the linearized Navier-Stokes equations. Phys. Fluids A: Fluid Dyn.5 (11), 2600-2609. · Zbl 0809.76078
[20] Farrell, B.F. & Ioannou, P.J.1996Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci.53 (14), 2025-2040.
[21] Gibson, J.F., et al.2019 Channelflow 2.0. Manuscript in preparation.
[22] Gómez, F., Blackburn, H.M., Rudman, M., Sharma, A.S. & Mckeon, B.J.2016aA reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator. J. Fluid Mech.798, R2. · Zbl 1422.76039
[23] Gómez, F., Sharma, A.S. & Blackburn, H.M.2016bEstimation of unsteady aerodynamic forces using pointwise velocity data. J. Fluid Mech.804, R4.
[24] Hwang, Y. & Cossu, C.2010Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech.664, 51-73. · Zbl 1221.76104
[25] Illingworth, S.J., Monty, J.P. & Marusic, I.2018Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech.842, 146-162. · Zbl 1419.76392
[26] Iyer, A.S., Witherden, F.D., Chernyshenko, S.I. & Vincent, P.E.2019Identifying eigenmodes of averaged small-amplitude perturbations to turbulent channel flow. J. Fluid Mech.875, 758-780. · Zbl 1430.76308
[27] Jiménez, J.2013Near-wall turbulence. Phys. Fluids (1994-present)25 (10), 101302.
[28] Jovanović, M.R. & Bamieh, B.2005Componentwise energy amplification in channel flows. J. Fluid Mech.534, 145-183. · Zbl 1074.76016
[29] Kadri Harouna, S. & Mémin, E.2017Stochastic representation of the Reynolds transport theorem: revisiting large-scale modeling. Comput. Fluids156, 456-469. · Zbl 1390.76068
[30] Kaiser, T.L., Lesshafft, L. & Oberleithner, K.2019Prediction of the flow response of a turbulent flame to acoustic perturbations based on mean flow resolvent analysis. Trans. ASME: J. Engng Gas. Turbines Power141 (11), 111021.
[31] Kim, J., Moin, P. & Moser, R.1987Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.177 (1), 133-166. · Zbl 0616.76071
[32] Kloeden, P.E. & Platen, E.2013Numerical Solution of Stochastic Differential Equations, Stochastic Modelling and Applied Probability, vol. 23. Springer Science & Business Media.
[33] Leclercq, C., Demourant, F., Poussot-Vassal, C. & Sipp, D.2019Linear iterative method for closed-loop control of quasiperiodic flows. J. Fluid Mech.868, 26-65. · Zbl 1415.76129
[34] Lesshafft, L., Semeraro, O., Jaunet, V., Cavalieri, A.V.G. & Jordan, P.2019Resolvent-based modeling of coherent wave packets in a turbulent jet. Phys. Rev. Fluids4, 063901.
[35] Lozano-Durán, A. & Jiménez, J.2014Effect of the computational domain on direct simulations of turbulent channels up to \(Re_\tau = 4200\). Phys. Fluids26 (1), 011702.
[36] Luhar, M., Sharma, A.S. & Mckeon, B.J.2014On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis. J. Fluid Mech.751, 38-70.
[37] Martini, E., Cavalieri, A.V.G., Jordan, P., Towne, A. & Lesshafft, L.2020aResolvent-based optimal estimation of transitional and turbulent flows. J. Fluid Mech.900, A2. · Zbl 1460.76569
[38] Martini, E., Rodríguez, D., Towne, A. & Cavalieri, A.V.G.2020b Efficient computation of global resolvent modes (preprint). arXiv:2008.10904.
[39] Mckeon, B.J. & Sharma, A.S.2010A critical-layer framework for turbulent pipe flow. J. Fluid Mech.658, 336-382. · Zbl 1205.76138
[40] Mémin, E.2014Fluid flow dynamics under location uncertainty. Geophys. Astrophys. Fluid Dyn.108 (2), 119-146. · Zbl 07657767
[41] Moarref, R., Jovanović, M.R., Tropp, J.A., Sharma, A.S. & Mckeon, B.J.2014A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids (1994-present)26 (5), 051701.
[42] Moarref, R., Sharma, A.S., Tropp, J.A. & Mckeon, B.J.2013Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech.734, 275-316. · Zbl 1294.76181
[43] Monokrousos, A., Åkervik, E., Brandt, L. & Henningson, D.S.2010Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers. J. Fluid Mech.650, 181-214. · Zbl 1189.76192
[44] Morra, P., Nogueira, P.A.S., Cavalieri, A.V.G. & Henningson, D.S.2021The colour of forcing statistics in resolvent analyses of turbulent channel flows. J. Fluid Mech.907, A24. · Zbl 1461.76283
[45] Morra, P., Semeraro, O., Henningson, D.S. & Cossu, C.2019On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech.867, 969-984. · Zbl 1415.76355
[46] Nogueira, P.A.S., Morra, P., Martini, E., Cavalieri, A.V.G. & Henningson, D.S.2021Forcing statistics in resolvent analysis: application in minimal turbulent Couette flow. J. Fluid Mech.908, A32. · Zbl 1492.76070
[47] Pier, B.2002On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech.458, 407-417. · Zbl 1060.76031
[48] Pinier, B., Mémin, E., Laizet, S. & Lewandowski, R.2019Stochastic flow approach to model the mean velocity profile of wall-bounded flows. Phys. Rev. E99 (6), 063101.
[49] Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S.2009A note on optimal transient growth in turbulent channel flows. Phys. Fluids21 (1), 015109. · Zbl 1183.76425
[50] Resseguier, V., Mémin, E. & Chapron, B.2017aGeophysical flows under location uncertainty, part I random transport and general models. Geophys. Astrophys. Fluid Dyn.111 (3), 149-176. · Zbl 1506.76025
[51] Resseguier, V., Mémin, E. & Chapron, B.2017bGeophysical flows under location uncertainty, part II quasi-geostrophy and efficient ensemble spreading. Geophys. Astrophys. Fluid Dyn.111 (3), 177-208. · Zbl 1506.76026
[52] Resseguier, V., Mémin, E. & Chapron, B.2017cGeophysical flows under location uncertainty, part III SQG and frontal dynamics under strong turbulence conditions. Geophys. Astrophys. Fluid Dyn.111 (3), 209-227. · Zbl 1506.76027
[53] Resseguier, V., Mémin, E., Heitz, D. & Chapron, B.2017dStochastic modelling and diffusion modes for proper orthogonal decomposition models and small-scale flow analysis. J. Fluid Mech.828, 29. · Zbl 1430.76248
[54] Reynolds, W.C. & Hussain, A.K.M.F.1972The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech.54 (2), 263-288.
[55] Reynolds, W.C. & Tiederman, W.G.1967Stability of turbulent channel flow, with application to Malkus’s theory. J. Fluid Mech.27 (2), 253-272.
[56] Ribeiro, J.H.M., Yeh, C. -A. & Taira, K.2020Randomized resolvent analysis. Phys. Rev. Fluids5, 033902.
[57] Schmid, P.J. & Henningson, D.S.2001Stability and Transition in Shear Flows. Springer-Verlag. · Zbl 0966.76003
[58] Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Brès, G.A.2018Spectral analysis of jet turbulence. J. Fluid Mech.855, 953-982. · Zbl 1415.76293
[59] Sharma, A.S., Moarref, R., Mckeon, B.J., Park, J.S., Graham, M.D. & Willis, A.P.2016Low-dimensional representations of exact coherent states of the Navier-Stokes equations from the resolvent model of wall turbulence. Phys. Rev. E93, 021102.
[60] Symon, S., Illingworth, S.J. & Marusic, I.2020 Energy transfer in turbulent channel flows and implications for resolvent modelling (preprint). arXiv:2004.13266.
[61] Symon, S., Sipp, D. & Mckeon, B.J.2019A tale of two airfoils: resolvent-based modelling of an oscillator versus an amplifier from an experimental mean. J. Fluid Mech.881, 51-83. · Zbl 1430.76066
[62] Towne, A., Lozano-Durán, A. & Yang, X.2020Resolvent-based estimation of space-time flow statistics. J. Fluid Mech.883, A17. · Zbl 1430.76127
[63] Towne, A., Schmidt, O.T. & Colonius, T.2018Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech.847, 821-867. · Zbl 1404.76145
[64] Trefethen, L.N. & Embree, M.2005Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press. · Zbl 1085.15009
[65] Yang, Y. & Mémin, E.2017High-resolution data assimilation through stochastic subgrid tensor and parameter estimation from 4DEnVar. Tellus A69 (1), 1308772.
[66] Zare, A., Georgiou, T.T. & Jovanović, M.R.2019Stochastic dynamical modeling of turbulent flows. Annu. Rev. Control Robot. Auton. Syst.812, 636-680. · Zbl 1383.76303
[67] Zare, A., Jovanović, M.R. & Georgiou, T.T.2017Colour of turbulence. J. Fluid Mech.812, 636-680. · Zbl 1383.76303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.