×

Non-orthogonal stagnation-point flow of a micropolar fluid. (English) Zbl 1213.76032

Summary: This paper considers the problem of steady two-dimensional flow of a micropolar fluid impinging obliquely on a flat plate. The flow under consideration is a generalization of the classical modified Hiemenz flow for a micropolar fluid which occurs in the boundary layer near an orthogonal stagnation point. A coordinate decomposition transforms the full governing equations into a primary equation describing the modified Hiemenz flow for a micropolar fluid and an equation for the tangential flow coupled to the primary solution. The solution to the boundary-value problem is governed by two non-dimensional parameters: the material parameter \(K\) and the ratio of the microrotation to skin friction parameter \(n\). The obtained ordinary differential equations are solved numerically for some values of the governing parameters. The primary consequence of the free stream obliqueness is the shift of the stagnation point toward the incoming flow.

MSC:

76A99 Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eringen, A. C., Theory of micropolar fluids, J. Math. Mech., 16, 1-18 (1966) · Zbl 0145.21302
[2] Eringen, A. C., Theory of thermomicrofluids, J. Math. Anal. Appl., 38, 480-496 (1972) · Zbl 0241.76012
[3] J.W. Hoyt, A.G. Fabula, The effect of additives on fluid friction, U.S. Naval Ordinance Test Station Report, 1964.; J.W. Hoyt, A.G. Fabula, The effect of additives on fluid friction, U.S. Naval Ordinance Test Station Report, 1964.
[4] Ariman, T.; Turk, M. A.; Sylvester, N. D., Microcontinuum fluid mechanics – a review, Int. J. Engng. Sci., 11, 905-930 (1973) · Zbl 0259.76001
[5] Ariman, T.; Turk, M. A.; Sylvester, N. D., Application of microcontinuum fluid mechanics, Int. J. Engng. Sci., 12, 273-293 (1974) · Zbl 0273.76003
[6] Łukaszewicz, G., Micropolar Fluids: Theory and Application (1999), Birkhäuser: Birkhäuser Basel · Zbl 0923.76003
[7] Eringen, A. C., Microcontinuum Field Theories. II: Fluent Media (2001), Springer: Springer New York · Zbl 0972.76001
[8] Wang, C. Y., The unsteady oblique stagnation point flow, Phys. Fluids, 28, 2046-2049 (1985) · Zbl 0574.76033
[9] Hiemenz, K., Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder, Dingier Polytech. J., 326, 321-324 (1911)
[10] Stuart, J. T., The viscous flow near a stagnation point when the external flow has uniform vorticity, J. Aerospace Sci., 26, 124-125 (1959) · Zbl 0086.19903
[11] Tamada, K. J., Two-dimensional stagnation point flow impinging obliquely on a plane wall, J. Phys. Soc. Jpn., 46, 310-311 (1979)
[12] Dorrepaal, J. M., An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions, J. Fluid Mech., 163, 141-147 (1986) · Zbl 0605.76033
[13] Labropulu, F.; Dorrepaal, J. M.; Chandna, O. P., Oblique flow impinging on a wall with suction or blowing, Acta Mech., 115, 15-25 (1996) · Zbl 0859.76016
[14] Takemitsu, N.; Matunobu, Y., Unsteady stagnation-point flow impinging obliquely on an oscillating flat plate, J. Phys. Soc. Jpn., 47, 1347-1353 (1979) · Zbl 1334.76036
[15] Dorrepaal, J. M.; Chandna, O. P.; Labropulu, F., The flow of visco-elastic fluid near a point of reattachment, J. Appl. Math. Phys. (ZAMP), 43, 708-714 (1992) · Zbl 0753.76020
[16] Tilley, B. S.; Weidman, P. D., Oblique two-fluid stagnation-point flow, Eur. J. Mech. B/Fluids, 17, 205-217 (1998) · Zbl 0954.76021
[17] Rees, D. A.S.; Bassom, A. P., The Blasius boundary-layer flow of a micropolar fluid, Int. J. Engng. Sci., 34, 113-124 (1996) · Zbl 0900.76021
[18] Rees, D. A.S.; Pop, I., Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate, IMA J. Appl. Math., 61, 179-197 (1998) · Zbl 0923.76306
[19] Guram, G. S.; Smith, C., Stagnation flows of micropolar fluids with strong and weak interactions, Comp. Math. Appl., 6, 213-233 (1980) · Zbl 0434.76013
[20] Jena, S. K.; Mathur, M. N., Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a nonisothermal flat plate, Int. J. Engng. Sci., 19, 1431-1439 (1981) · Zbl 0476.76084
[21] Ahmadi, G., Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Engng. Sci., 14, 639-646 (1976) · Zbl 0329.76041
[22] Peddieson, J., An application of the micropolar fluid model to the calculation of turbulent shear flow, Int. J. Engng. Sci., 10, 23-32 (1972)
[23] Cebeci, T.; Bradshaw, P., Physical and Computational Aspect of Convective Heat Transfer (1984), Springer: Springer New York · Zbl 0545.76090
[24] Lok, Y. Y.; Phang, P.; Amin, N.; Pop, I., Unsteady boundary layer flow of a micropolar fluid near the forward stagnation point of a plane surface, Int. J. Engng. Sci., 41, 173-186 (2003) · Zbl 1211.76041
[25] Lok, Y. Y.; Amin, N.; Pop, I., Unsteady boundary layer flow of a micropolar fluid near the rear stagnation point of a plane surface, Int. J. Thermal Sci., 42, 995-1001 (2003) · Zbl 1211.76041
[26] Lok, Y. Y.; Amin, N.; Pop, I., Steady two-dimensional asymmetric stagnation point flow of a micropolar fluid, Z. Angew. Math. Mech. (ZAMM), 83, 594-602 (2003) · Zbl 1027.76002
[27] Gorla, R. S.R., Boundary layer flow of a micropolar fluid in the vicinity of an axisymmetric stagnation point on a cylinder, Int. J. Engng. Sci., 28, 145-152 (1990) · Zbl 0708.76005
[28] Hassanien, I. A.; Gorla, R. S.R., Combined forced and free convection in stagnation flows of micropolar fluids over vertical non-isothermal surfaces, Int. J. Engng. Sci., 28, 783-792 (1990)
[29] Bhargava, R.; Kumar, L.; Takhar, H. S., Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet, Int. J. Engng. Sci, 41, 2161-2178 (2003) · Zbl 1211.76068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.