×

Effects of a disease affecting a predator on the dynamics of a predator-prey system. (English) Zbl 1405.92245

Summary: We study the effects of a disease affecting a predator on the dynamics of a predator-prey system. We couple an SIRS model applied to the predator population, to a Lotka-Volterra model. The SIRS model describes the spread of the disease in a predator population subdivided into susceptible, infected and removed individuals. The Lotka-Volterra model describes the predator-prey interactions. We consider two time scales, a fast one for the disease and a comparatively slow one for predator-prey interactions and for predator mortality. We use the classical “aggregation method” in order to obtain a reduced equivalent model. We show that there are two possible asymptotic behaviors: either the predator population dies out and the prey tends to its carrying capacity, or the predator and prey coexist. In this latter case, the predator population tends either to a “disease-free” or to a “disease-endemic” state. Moreover, the total predator density in the disease-endemic state is greater than the predator density in the “disease-free” equilibrium (DFE).

MSC:

92D30 Epidemiology
92D40 Ecology
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, R.M.; May, R., Regulation and stability of host-parasite interactions. I. regulatory processes, J. anim. ecol., 47, 219-247, (1978)
[2] Anderson, R.M.; May, R., The invasion, persistence and spread of infectious diseases within animal and plant communities, Philos. trans. R. soc. lond. B biol. sci., 314, 533-570, (1982)
[3] Auger, P.; Bravo de la Parra, R., Methods of aggregation of variables in population dynamics, C. R. acad. sci. III, 323, 665-674, (2000)
[4] Auger, P.; Poggiale, J.-C., Emergence of population growth model: fast migration and slow growth, J. theor. biol., 182, 99-108, (1996)
[5] Auger, P.; Roussarie, R., Complex ecological models with simple dynamics: from individuals to population, Acta biol., 42, 111-136, (1994)
[6] Bairagi, N.; Roy, P.; Chattopadhyay, J., Role of infection on the stability of a predator – prey system with several response functions. A comparative study, J. theor. biol., 248, 10-25, (2007) · Zbl 1451.92274
[7] Beltrami, E.; Coarrol, T., Modelling the role of viral disease in recurrent phytoplankton blooms, J. math. biol., 32, 857-863, (1994) · Zbl 0825.92122
[8] Beretta, E.; Kuang, Y., Modeling and analysis of a marine bacteriophage infection, Math. biosci., 149, 57-76, (1998) · Zbl 0946.92012
[9] Chattopadhyay, J.; Arino, O., A predator – prey model with disease in the prey, Nonlinear anal., 36, 747-766, (1999) · Zbl 0922.34036
[10] Chattopadhyay, J.; Bairagi, N., Pelicans at risk in salton sea—an ecoepidemiological study, Ecol. model., 136, (2001)
[11] Chattopadhyay, J.; Pal, S., Viral infection on phytoplankton zooplankton system—a mathematical model, Ecol. model., 151, 15-28, (2002)
[12] Chattopadhyay, J.; Srinivasu, P.; Bairagi, N., Pelicans at risk in salton sea—an ecoepidemiological model-ii, Ecol. model., 167, 199-211, (2003)
[13] Cosgrove, C.L.; Knowles, S.C.L.; Day, K.P.; Sheldon, B.C., No evidence for Avian malaria infection during the nestling phase in a passerine bird, J. parasitol., 92, 1302-1304, (2006)
[14] de Jong, M.; Diekmann, O.; Heesterbeek, H., How does transmission of infection depend on population size?, (), 85-94, 539-570 · Zbl 0850.92042
[15] Diekmann, O.; Kretzschmar, M., Patterns in the effects of infectious diseases on population growth, J. math. biol., 29, 539-570, (1991) · Zbl 0732.92024
[16] Ebert, D.; Lipsitch, M.; Mangin, K., The effect of parasites on host population density and extinction: experimental epidemiology with daphnia and six microparasites, Am. nat., 156, (2000)
[17] Freedman, H.I., A model of predator – prey dynamics as modified by the action of a parasite, Math. biosci., 99, 143-155, (1990) · Zbl 0698.92024
[18] Getz, W.M.; Pickering, J., Epidemic models: thresholds and population regulation, Am. nat., 121, 892-898, (1983)
[19] Goh, B.S., 1976. Global stability in two species interactions. J. Math. Biol. 313-318.; Goh, B.S., 1976. Global stability in two species interactions. J. Math. Biol. 313-318. · Zbl 0362.92013
[20] Hadeler, K.P.; Freedman, H.I., Predator – prey populations with parasitic infection, J. math. biol., 27, 609-631, (1989) · Zbl 0716.92021
[21] Han, L.; Ma, Z.; Hethcote, H.W., Four predator prey models with infectious diseases, Math. comput. modelling, 34, 849-858, (2001) · Zbl 0999.92032
[22] Haque, M.; Venturino, E., An ecoepidemiological model with disease in predator: the ratio-dependent case, Math. methods appl. sci., 30, 1791-1809, (2007) · Zbl 1126.92050
[23] Harrison, G.W., Global stability of predator – prey interactions, J. math. biol., 8, 159-171, (1979) · Zbl 0425.92009
[24] Heesterbeek, J.A.; Metz, J.A., The saturating contact rate in marriage and epidemic models, J. math. biol., 31, 529-539, (1993) · Zbl 0770.92021
[25] Hethcote, H.W.; Wang, W.; Han, L.; Ma, Z., A predator – prey model with infected prey, Theor. popul. biol., 66, 259-268, (2004)
[26] Hudson, P.; Dobson, A.; Newborn, D., Do parasites make prey vulnerable to predation? red grouse and parasites, Anim. ecol., 61, 681-692, (1992)
[27] Labelle, P.; Dubey, J.; Mikaelian, I.; Blanchette, N.; Lafond, R.; St-Onge, S.; Martineau, D., Seroprevalence of antibodies to toxoplasma gondii in lynx (lynx canadensis) and bobcats (lynx rufus) from Québec, Canada, J. parasitol., 87, 1194-1196, (2001)
[28] Li, M.Y.; Muldowney, J.S., A geometric approach to global-stability problems, SIAM J. math. anal., 27, 1070-1083, (1996) · Zbl 0873.34041
[29] McCallum, H.; Barlow, N.; Hone, J., How should pathogen transmission be modelled?, Trends ecol. evol., 16, 295-300, (2001)
[30] Mchich, R.; Auger, P.; Lett, C., Effects of aggregative and solitary individual behaviors on the dynamics of predator – prey game models, Ecol. model., 197, 281-289, (2006)
[31] Mchich, R.; Auger, P.; Poggiale, J.-C., Effect of predator density dependent dispersal of prey on stability of a predator – prey system, Math. biosci., 206, 343-356, (2007) · Zbl 1114.92069
[32] Merino, S.; Potti, J.; Fargallo, J.A., Blood parasites of passerine birds from central Spain, J. wildl. dis., 33, 638-641, (1997)
[33] Michalski, J.; Poggiale, J.-C.; Arditi, R.; Auger, P., Macroscopic dynamics effects of migrations in patchy predator – prey system, J. theor. biol., 185, 459-474, (1997)
[34] Packer, C.; Holt, R.; Hudson, P.; Lafferty, K.; Dobson, A., Keeping the herds healthy and alert: implications of predator control for infectious disease, Ecol. lett., 6, 797-802, (2003)
[35] Pielou, E., Introduction to mathematical ecology, (1969), Wiley-Interscience Berlin · Zbl 0259.92001
[36] Roberts, M., The dynamic of bovine tuberculosis in possum population and its control by culling or vaccination, J. anim. ecol., 65, 451-464, (1996)
[37] Seibert, P., Reduction theorems for stability of systems in general spaces, Nonlinear anal. theory methods appl., 30, 4675-4681, (1997) · Zbl 0893.34047
[38] Seibert, P.; Florio, J., On the reduction to a subspace of stability properties of systems in metric spaces, Ann. mat. pura appl. IV ser., 169, 291-320, (1995) · Zbl 0853.54038
[39] Venturino, E., Epidemics in predator – prey models: disease in the predators, IMA J. math. appl. med. biol., 19, 185-205, (2002) · Zbl 1014.92036
[40] Wilmers, C.; Post, E.; Peterson, R.; Vucetich, J., Predator-disease out-break modulates top-down, bottom-up and climatic effects on herbivore population dynamics, Ecol. lett., 9, 383-389, (2006)
[41] Xiao, Y.; Chen, L., Modeling and analysis of a predator – prey model with disease in the prey, Math. biosci., 171, 59-82, (2001) · Zbl 0978.92031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.