×

Efficient evaluation of Casimir force in arbitrary three-dimensional geometries by integral equation methods. (English) Zbl 1237.81121

Summary: In this Letter, we generalized the surface integral equation method for the evaluation of Casimir force in arbitrary three-dimensional geometries. Similar to the two-dimensional case, the evaluation of the mean Maxwell stress tensor is cast into solving a series of three-dimensional scattering problems. The formulation and solution of the three-dimensional scattering problems are well-studied in classical computational electromagnetics. This Letter demonstrates that this quantum electrodynamic phenomenon can be studied using the knowledge and techniques of classical electrodynamics.

MSC:

81T55 Casimir effect in quantum field theory
81V10 Electromagnetic interaction; quantum electrodynamics
78A25 Electromagnetic theory (general)
78M25 Numerical methods in optics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Casimir, H. B.G., Proc. K. Ned. Akad. Wetensch., 51, 793 (1948)
[2] Buks, E.; Roukes, M. L., Phys. Rev. B, 63, 033402 (2001)
[3] Chan, H. B.; Aksyuk, V. A.; Kleiman, R. N.; Bishop, D. J.; Capasso, F., Science, 291, 1941 (2001)
[4] Chan, H. B.; Aksyuk, V. A.; Kleiman, R. N.; Bishop, D. J.; Capasso, F., Phys. Rev. Lett., 87, 211801 (2001)
[5] Capasso, F.; Munday, J. N.; Iannuzzi, D.; Chan, H. B., IEEE J. Selected Topics in Quantum Electronics, 13, 400 (2007)
[6] Bordag, M.; Mohideen, U.; Mostepanenko, V. M., Phys. Rep., 353, 1 (2001)
[7] Scardicchio, A.; Jaffe, R. L., Nucl. Phys. B, 704, 552 (2005)
[8] Balian, R.; Duplantier, B., Ann. Phys., 112, 165 (1978)
[9] Milton, K. A.; Wagner, J., J. Phys. A: Math. Theor., 41, 155402 (2008)
[10] Büscher, R.; Emig, T., Phys. Rev. Lett., 94, 133901 (2005)
[11] Emig, T.; Graham, N.; Jaffe, R. L.; Kardar, M., Phys. Rev. Lett., 99, 170403 (2007)
[12] Emig, T.; Jaffe, R. L.; Kardar, M.; Scardicchio, A., Phys. Rev. Lett., 96, 080403 (2006)
[13] Emig, T., J. Stat. Mech., P04007 (2008)
[14] Homer Reid, M. T.; Rodriguez, A. W.; White, J.; Johnson, S. G., Phys. Rev. Lett., 103, 040401 (2009)
[15] Rao, S. M.; Wilton, D. R.; Glisson, A. W., IEEE Trans. Antennas Propagat., 30, 409 (1982)
[16] Dzyaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, L. P., Physics-Uspekhi, 4, 153 (1961)
[17] Rodriguez, A. W.; Ibanescu, M.; Iannuzzi, D.; Joannopoulos, J. D.; Johnson, S. G., Phys. Rev. A, 76, 032106 (2007)
[18] Rodriguez, A. W.; Ibanescu, M.; Iannuzzi, D.; Capasso, F.; Joannopoulos, J. D.; Johnson, S. G., Phys. Rev. Lett., 99, 080401 (2007)
[19] Rodriguez, A. W.; Joannopoulos, J. D.; Johnson, S. G., Phys. Rev. A, 77, 062107 (2008)
[20] Chew, W. C.; Jin, J. M.; Michielssen, E.; Song, J. M., Fast and Efficient Algorithms in Computational Electromagnetics (2001), Artech: Artech Norwood, MA
[21] Jackson, J. D., Classical Electrodynamics (1998), Wiley: Wiley New York · Zbl 0114.42903
[22] Landau, L. D.; Lifshitz, E. M.; Pitaevskii, L. P., Statistical Physics. Part 2 (1980), Pergamon Press
[23] Xiong, J. L.; Chew, W. C., Appl. Phys. Lett., 95, 154102 (2009)
[24] Medgyesi-Mitschang, L. N.; Putman, J. M.; Gedera, M. B., J. Opt. Soc. Am. A, 11, 1383 (1994)
[25] Tong, M. S.; Chew, W. C., Microwave Opt. Technol. Lett., 49, 1383 (2007)
[26] Ederth, T., Phys. Rev. A, 62, 062104 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.