×

Automorphic forms and the distribution of points on odd-dimensional spheres. (English) Zbl 1087.11033

The theory of Hecke operators can be used to construct uniformly distributed sets of points on spheres. The degree of uniform distribution is measured by a \(L^{2}\) discrepancy function which has to be compared with the number of points of the set used. The general result here is that for any \(n \geq 2\) there is a number \(h\) so that any prime \(p \geq 13\) there is a set (Hecke operator) of \(h(p^{n}-1)/(p-1)\) points on \(S^{2n-1}\) where the discrepancy is bounded by \(hnp^{-(n-1)/2}\). In proving this the author makes use of the theory of automorphic forms on unitary groups (they study more generally groups \(G\) where \(G(\mathbb R)\) is compact). The author reduces the estimation of the discrepancy by the techniques of harmonic analysis to questions about automorphic forms. The central estimate follows from arguments of base change (due here mainly to the author and Labesse) and the association of certain automorphic forms with Galois representations due to [M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties. Ann. Math. Studies 151. Princeton Univ. Press (2002; Zbl 1036.11027)].

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11G18 Arithmetic aspects of modular and Shimura varieties
14G35 Modular and Shimura varieties

Citations:

Zbl 1036.11027
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Clozel, L., Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n), Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 73, 97-145 (1991) · Zbl 0739.11020 · doi:10.1007/BF02699257
[2] L. Clozel et J.-P. Labesse,Changement de base pour les représentations cohomologiques de certains groupes unitaires, Appendice à J.-P. LabesseCohomologie, stabilisation et changement de base, Astérisque257 (1999).
[3] Clozel, L.; Oh, H.; Ullmo, E., Hecke operators and equidistribution of Hecke points, Inventiones Mathematicae, 114, 327-351 (2001) · Zbl 1144.11301 · doi:10.1007/s002220100126
[4] L. Clozel and E. Ullmo,Equidistribution des points de Hecke, inContributions to Automorphic Forms, Geometry and Arithmetic (in honor of J. Shalika) (H. Hida, F. Shahidi and D. Ramakrishnan, eds.), Johns Hopkins University Press, to appear. · Zbl 1068.11042
[5] Y. Colin de Verdière,Distribution des points sur une sphère, (d’après Lubotzky, Phillips et Sarnak),Séminaire Bourbaki n^o 703, 1988-89. · Zbl 0701.11024
[6] Deligne, P., Conjecture de Weil II, Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 52, 137-252 (1980) · Zbl 0456.14014 · doi:10.1007/BF02684780
[7] M. Harris and R. Taylor,The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, Princeton University Press, 2002. · Zbl 1036.11027
[8] Kottwitz, R., On the λ-acid representations associated to some simple Shimura varieties, Inventiones Mathematicae, 108, 653-665 (1992) · Zbl 0765.22011 · doi:10.1007/BF02100620
[9] Lubotzky, A.; Phillips, R.; Sarnak, P., Hecke operators and distributing points on the sphere I, Communications on Pure and Applied Mathematics, 39, Supplement, 149-186 (1986) · Zbl 0619.10052 · doi:10.1002/cpa.3160390710
[10] Pisier, G., Quadratic forms in unitary operators, Linear Algebra and its Applications, 267, 125-137 (1997) · Zbl 0889.47007
[11] Serre, J.-P., Répartition asymptotique des valeurs propres de l’opérateur de Hecke T_p, Journal of the American Mathematical Society, 10, 75-102 (1997) · Zbl 0871.11032 · doi:10.1090/S0894-0347-97-00220-8
[12] Y. Shalom,Random ergodic theorems, invariant means and unitary representation, inInternational Colloquium on “Lie Groups and Ergodic Theory”, Tata Institute for Fundamental Research, Mumbai, 1998.
[13] Vignéras, M. F., On the global correspondence between GL(n)and division algebras (1984), Princeton: Institute for Advanced Study, Princeton
[14] Warner, G., Harmonic Analysis on Semi-simple Lie Groups (1972), Berlin: Springer-Verlag, Berlin · Zbl 0265.22021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.