×

The oscillatory boundary conditions of different frequency bands in Parkinson’s disease. (English) Zbl 1397.92332

Summary: Parkinson’s disease (PD) is a neurodegenerative disease that is common in the elderly population. The most important pathological change in PD is the degeneration and death of dopaminergic neurons in the substantia nigra of the midbrain, which results in a decrease in the dopamine (DA) content of the striatum. The exact cause of this pathological change is still unknown. Numerous studies have shown that the evolution of PD is associated with abnormal oscillatory activities in the basal ganglia, with different oscillation frequency ranges, such as the typical beta band (13–30 Hz), the alpha band (8–12 Hz), the theta band (4–7 Hz) and the delta band (1–3 Hz). Although some studies have implied that abnormal interactions between the subthalamic nucleus (STN) and globus pallidus (GP) neurons may be a key factor required to induce these oscillations, the relative mechanism is still unclear. The effects of other nerve nuclei in the basal ganglia, such as the striatum, on these oscillations are still unknown. The thalamus and cortex both have close input and output relationships with the basal ganglia, and many previous studies have indicated that they may also exert effects on Parkinson’s disease oscillation, but the mechanisms involved are unclear. In this paper, we built a corticothalamic-basal ganglia (CTBG) mean firing-rate model to explore the onset mechanisms of these different oscillation phenomena. We found that, in addition to the STN-GP network, Parkinson’s disease oscillations may also be induced by changing the coupling strength and delays in other pathways. Different frequency bands appear in the oscillating region, and various boundary conditions are depicted in parameter diagrams. The onset mechanism is well explained both by the model and by the numerical simulation results. Therefore, this model provides a unifying framework for studying the mechanism of Parkinson’s disease oscillations, and we hope that the results obtained in this work can inspire future experimental studies.

MSC:

92C50 Medical applications (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahn, S.; Zauber, S. E.; Worth, R. M.; Witt, T.; Rubchinsky, L. L., Interaction of synchronized dynamics in cortex and basal ganglia in parkinson’s disease, Eur. J. Neurosci., 42, 2164-2171, (2015)
[2] Alesch, F.; Pinter, M. M.; Helscher, R. J.; Fertl, L.; Benabid, A. L.; Koos, W. T., Stimulation of the ventral intermediate thalamic nucleus in tremor dominated parkinson’s disease and essential tremor, Acta Neurochir., 136, 75-81, (1995)
[3] Androulidakis, A. G.; Mazzone, P.; Litvak, V.; Penny, W.; Dileone, M.; Gaynor, L. M.; Tisch, S.; Di Lazzaro, V.; Brown, P., Oscillatory activity in the pedunculopontine area of patients with parkinson’s disease, Exp. Neurol., 211, 59-66, (2008)
[4] Arakaki, T.; Mahon, S.; Charpier, S.; Leblois, A.; Hansel, D., The role of striatal feedforward inhibition in the maintenance of absence seizures, J. Neurosci., 36, 9618-9632, (2016)
[5] Baizabal-Carvallo, J. F.; Kagnoff, M. N.; Jimenez-Shahed, J.; Fekete, R.; Jankovic, J., The safety and efficacy of thalamic deep brain stimulation in essential tremor: 10 years and beyond, J. Neurol. Neurosurg. Psychiatry., 85, 567, (2014)
[6] Baladron, J., Nambu, A., Hamker, F. H., Neurosci., E. J., 2017. The subthalamic nucleus-external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro-computational study. 1-14.; Baladron, J., Nambu, A., Hamker, F. H., Neurosci., E. J., 2017. The subthalamic nucleus-external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro-computational study. 1-14.
[7] Benabid, A. L.; Pollak, P.; Louveau, A.; Henry, S.; De, R. J., Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral parkinson disease, Stereot. Funct. Neuros., 50, 344-346, (1987)
[8] Benabid, A. L.; Pollak, P.; Seigneuret, E., Chronic VIM thalamic stimulation in parkinsons disease, essential tremor and extra-pyramidal dyskinesias, Acta Neurochir. Suppl., 58, 39, (1993)
[9] Beuter, A.; Lefaucheur, J. P.; Modolo, J., Closed-loop cortical neuromodulation in parkinson’s disease: an alternative to deep brain stimulation?, Clin. Neurophysiol., 125, 874-885, (2014)
[10] Bevan, M. D.; Magill, P. J.; Terman, D.; Bolam, J. P.; Wilson, C. J., Move to the rhythm: oscillations in the subthalamic nucleuscexternal globus pallidus network, Trends Neurosci., 25, 525-531, (2002)
[11] Biundo, R.; Weis, L.; Facchini, S.; Formento-Dojot, P.; Vallelunga, A.; Pilleri, M.; Weintraub, D.; Angelo Antonini, A., Patterns of cortical thickness associated with impulse control disorders in parkinson’s disease, Mov. Disord., 30, 688-695, (2015)
[12] Bolam, J. P.; Hanley, J. J.; Booth, P. A.C.; Bevan, M. D., Synaptic organisation of the basal ganglia, J. Anat., 196, 527-542, (2000)
[13] Bour, L. J.; Lourens, M. A.J.; Verhagen, R.; de Bie, R. M.; van den Munckhof, P.; Schuurman, P. R.; Contarino, M. F., Directional recording of subthalamic spectral power densities in parkinson’s disease and the effect of steering deep brain stimulation, Brain Stimul., 8, 730-741, (2015)
[14] Brown, P.; Oliviero, A.; Mazzone, P.; Insola, A.; Tonali, P.; Lazzaro, V. D., Dopamine dependency of oscillations between subthalamic nucleus and pallidum in parkinson’s disease, J. Neurosci., 21, 1033-1038, (2001)
[15] Caviness, J. N.; Hentz, J. G.; Evidente, V. G.; Driver-Dunckley, E.; Samanta, J.; Mahant, P.; Connor, D. J.; Sabbagh, M. N.; Shill, H. A.; Adler, C. H., Both early and late cognitive dysfunction affects the electroencephalogram in parkinson’s disease, Parkinsonism Relat. D., 13, 348-354, (2007)
[16] Chakravarty, M. M.; Hamani, C.; Martinez-Canabal, A., Deep brain stimulation of the ventromedial prefrontal cortex causes reorganization of neuronal processes and vasculature, Neuroimage, 125, 422-427, (2016)
[17] Chan, C. S.; Glajch, K. E.; Gertler, T. S., HCN channelopathy in external globus pallidus neurons in models of parkinson’s disease, Nat. Neurosci., 14, 85-92, (2011)
[18] Chen, L.; Liu, R.; Liu, Z. P.; Li, M.; Aihara, K., Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers, Sci. Rep., 2, 342, (2012)
[19] Coenen, V. A.; Rijntjes, M.; Prokop, T.; Piroth, T.; Amtage, F.; Urbach, H.; Reinacher, P. C., One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type parkinson’s disease, Acta Neurochir., 158, 773-781, (2016)
[20] Cury, R. G.; Fraix, V.; Castrioto, A.; Prez Fernndez, M. A.; Krack, P.; Chabardes, S.; Seigneuret, E.; Alho, E. J.L.; Benabid, A. L.; Moro, E., Thalamic deep brain stimulation for tremor in parkinson disease, essential tremor, and dystonia, Neurology, 89, 1416-1423, (2017)
[21] Dayan, P.; Abbott, L. F., Theoretical neuroscience, (2001), MIT Press Cambridge, MA · Zbl 1051.92010
[22] De Hemptinne, C.; Swann, N. C.; Ostrem, J. L.; Ryapolova-Webb, E. S.; Luciano, M. S.; Galifianakis, N.; Starr, P. A., Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in parkinson’s disease, Nat. Neurosci., 18, 779-786, (2015)
[23] Dragicevic, E.; Schiemann, J.; Liss, B., Dopamine midbrain neurons in health and parkinson’s disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels, Neurosci., 284, 798-814, (2015)
[24] Fogelson, N.; Pogosyan, A.; Kühn, A. A.; Kupsch, A.; Van Bruggen, G.; Speelman, H.; Tijssen, M.; Quartarone, A.; Insola, A.; Mazzone, P.; Di, L. V.; Limousin, P.; Brown, P., Reciprocal interactions between oscillatory activities of different frequencies in the subthalamic region of patients with parkinson’s disease, Eur. J. Neurosci., 22, 257-266, (2005)
[25] Frank, M. J.; Scheres, A.; Sherman, S. J., Understanding decision-making deficits in neurological conditions: insights from models of natural action selection, Philos. Trans. R. Soc. London, 362, 1641-1654, (2007)
[26] Fujimoto, K.; Kita, H., Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat[j], Brain Res., 609, 185-192, (1993)
[27] Gage, G. J.; Stoetzner, C. R.; Wiltschko, A. B.; Berke, J. D., Selective activation of striatal fast-spiking interneurons during choice execution, Neuron, 67, 466-479, (2010)
[28] Gillies, A.; Willshaw, D.; Li, Z., Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia, Proc. R. Soc. B, 269, 545, (2002)
[29] Graybiel, A. M., The basal ganglia, Trends Neurosci., 18, 60-62, (1995)
[30] Hallworth, N. E.; Wilson, C. J.; Bevan, M. D., Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro, J. Neurosci., 23, 7525-7542, (2003)
[31] Hanganu, A.; Bedetti, C.; Degroot, C., Mild cognitive impairment is linked with faster rate of cortical thinning in patients with parkinson’s disease longitudinally, Brain, 137, 1120-1129, (2014)
[32] Henderson, J. M.; Carpenter, K.; Cartwright, H.; Halliday, G. M., Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and parkinson’s disease: clinical and therapeutic implications, Brain, 123, 1410-1421, (2000)
[33] Hikosaka, O.; Wurtz, R. H., The basal ganglia, Rev. Oculomot Res., 3, 257-281, (1989)
[34] Hirschmann, J.; Özkurt, T. E.; Butz, M.; Homburger, M.; Elben, S.; Hartmann, C. J.; Vesper, J.; Wojtecki, L.; Schnitzler, A., Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with parkinson’s disease, Neuroimage, 55, 1159-1168, (2011)
[35] Holt, A. B.; Netoff, T. I., Origins and suppression of oscillations in a computational model of parkinson’s disease, J. Comput. Neurosci., 37, 505-521, (2014) · Zbl 1409.92041
[36] Humphries, M. D., Slaves to the rhythm: coupling of the subthalamic nucleus-globus pallidus network in Parkinsonian oscillations, J. Physiol., 592, 1427, (2014)
[37] Humphries, M. D.; Stewart, R. D.; Gurney, K. N., A physiologically plausible model of action selection and oscillatory activity in the basal ganglia, J. Neurosci., 26, 12921, (2006)
[38] Kita, H., Globus pallidus external segment, Prog. Brain Res., 160, 111-133, (2007)
[39] Kita, H.; Chang, H. T.; Kitai, S. T., Pallidal inputs to subthalamus: intracellular analysis, Brain Res., 264, 255-265, (1983)
[40] Kita, H.; Kitai, S. T., Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation, Brain Res., 564, 296-305, (1991)
[41] Kita, H.; Nambu, A.; Kaneda, K.; Tachibana, Y.; Takada, M., Role of ionotropic glutamatergic and gabaergic inputs on the firing activity of neurons in the external pallidum in awake monkeys, J. Neurophysiol., 92, 3069-3084, (2004)
[42] Kita, H.; Tachibana, Y.; Nambu, A.; Chiken, S., Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey, J. Neurosci., 25, 8611-8619, (2005)
[43] Koös, T.; Tepper, J. M., Inhibitory control of neostriatal projection neurons by gabaergic interneurons, Nat. Neurosci., 2, 467, (1999)
[44] Kumar, A.; Cardanobile, S.; Rotter, S.; Aertsen, A., The role of inhibition in generating and controlling parkinson’s disease oscillations in the basal ganglia, Front. Syst. Neurosci., 5, 86, (2011)
[45] Lebedev, M. A.; Wise, S. P., Oscillations in the premotor cortex: single-unit activity from awake, behaving monkeys, Exp. Brain Res., 130, 195-215, (2000)
[46] Leblois, A.; Boraud, T.; Meissner, W.; Bergman, H.; Hansel, D., Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia, J. Neurosci., 26, 3567-3583, (2006)
[47] Levy, R.; Hutchison, W. D.; Lozano, A. M.; Dostrovsky, J. O., High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor, J. Neurosci., 20, 7766-7775, (2000)
[48] Li, M.; Li, C.; Liu, W. X., Dysfunction of PLA2g6 and CYP2c44-associated network signals imminent carcinogenesis from chronic inflammation to hepatocellular carcinoma, J. Mol. Cell Biol., 9, 489-503, (2017)
[49] Liu, C.; Zhu, Y.; Liu, F.; Wang, J.; Li, H.; Deng, B.; Fietkiewicz, C.; Loparo, K. A., Neural mass models describing possible origin of the excessive beta oscillations correlated with Parkinsonian state, Neural Networks, 88, 65-73, (2017)
[50] Liu, X.; Chang, X.; Liu, R.; Yu, X.; Chen, L.; Aihara, K., Quantifying critical states of complex diseases using single-sample dynamic network biomarkers, PLoS Comput. Biol., 13, e1005633, (2017)
[51] Liu, X.; Wang, Y.; Ji, H.; Aihara, K.; Chen, L., Personalized characterization of diseases using sample-specific networks, Nucleic Acids Res., 44, (2016)
[52] Mallet, N.; Pogosyan, A.; Márton, L. F.; Bolam, J. P.; Brown, P.; Magill, P. J., Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity, J. Neurosci., 28, 14245-14258, (2008)
[53] Mallet, N.; Pogosyan, A.; Sharott, A.; Csicsvari, J.; Bolam, J. P.; Brown, P.; Magill, P. J., Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex, J. Neurosci., 28, 4795-4806, (2008)
[54] Mastro, K. J.; Gittis, A. H., Striking the right balance: cortical modulation of the subthalamic nucleus-globus pallidus circuit, Neuron, 85, 233-235, (2015)
[55] Muralidharan, V.; Balasubramani, P. P.; Chakravarthy, V. S.; Lewis, S. J.G.; Moustafa, A. A., A computational model of altered gait patterns in parkinson’s disease patients negotiating narrow doorways, Front. Comput. Neurosc., 7, 190, (2015)
[56] Nakanishi, H.; Kita, H.; Kitai, S. T., Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation, Brain Res., 437, 45-55, (1987)
[57] Nevado Holgado, A. J.; Mallet, N.; Magill, P. J.; Bogacz, R., Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations, J. Physiol., 592, 1429-1455, (2014)
[58] Nevado Holgado, A. J.; Terry, J. R.; Bogacz, R., Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network, J. Neurosci., 30, 12340, (2010)
[59] Oertel, M. F.; Schüpbach, W. M.M.; Ghika, J. A.; Stieglitz, L. H.; Fiechter, M.; Kaelin-Lang, A.; Raabe, A.; Pollo, C., Combined thalamic and subthalamic deep brain stimulation for tremor-dominant parkinson’s disease, Acta Neurochir., 159, 265-269, (2017)
[60] Ondo, W.; Jankovic, J.; Schwartz, K.; Almaguer, M.; Simpson, R. K., Unilateral thalamic deep brain stimulation for refractory essential tremor and parkinson’s disease tremor, Neurology, 51, 1063-1069, (1998)
[61] Parker, P. R.L.; Lalive, A. L.; Kreitzer, A. C., Pathway-specific remodeling of thalamostriatal synapses in Parkinsonian mice, Neuron, 89, 734-740, (2016)
[62] Pavlides, A.; Hogan, S. J.; Bogacz, R., Improved conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network, BMC Neurosci, 36, 2229-2239, (2012)
[63] Pavlides, A.; Hogan, S. J.; Bogacz, R., Computational models describing possible mechanisms for generation of excessive beta oscillations in parkinson’s disease, PLoS Comput. Biol., 11, e1004609, (2015)
[64] Paz, J. T.; Deniau, J. M.; Charpier, S., Rhythmic bursting in the cortico-subthalamo-pallidal network during spontaneous genetically determined spike and wave discharges, J. Neurosci., 25, 2092-2101, (2005)
[65] Paz, J. T.; Polack, P. O.; Slaght, S. J., Cortical initiation of absence seizures, propagation to basal ganglia and back to the cortex, Pan-Brain Abnormal Neural Network in Epilepsy, 41-65, (2009), Research Signpost Kerala
[66] Plenz, D.; Kital, S. T., A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus, Nature, 400, 677-682, (1999)
[67] Quinn, E. J.; Blumenfeld, Z.; Velisar, A.; Koop, M. M.; Shreve, L. A.; Trager, M. H.; Hill, B. C.; Kilbane, C.; Henderson, J. M.; Brontë-Stewart, H., Beta oscillations in freely moving parkinson’s subjects are attenuated during deep brain stimulation, Mov. Disord., 30, 1750-1758, (2015)
[68] Redgrave, P.; Prescott, T. J.; Gurney, K., The basal ganglia: a vertebrate solution to the selection problem?, Neurosci., 89, 1009-1023, (1999)
[69] Ridding, M. C.; Rothwell, J. C.; Inzelberg, R., Changes in excitability of motor cortical circuitry in patients with parkinson’s disease, Ann. Neurol., 37, 181-188, (1995)
[70] Rubin, J. E.; Terman, D., High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model, J. Comput. Neurosci, 16, 211, (2004)
[71] Sabatini, U.; Boulanouar, K.; Fabre, N.; Martin, F.; Carel, C.; Colonnese, C.; Bozzao, L.; Berry, I.; Montastruc, J. L.; Chollet, F.; Rascol, O., Cortical motor reorganization in akinetic patients with parkinson’s disease: a functional MRI study, Brain, 123, 394-403, (2000)
[72] Sarnthein, J.; Jeanmonod, D., High thalamocortical theta coherence in patients with parkinson’s disease, J. Neurosci., 27, 124-131, (2007)
[73] Scatton, B.; Javoy-Agid, F.; Rouquier, L.; Dubois, B.; Agid, Y., Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in parkinson’s disease, Brain Res., 275, 321-328, (1983)
[74] Schultz, W.; Romo, R., Neuronal activity in the monkey striatum during the initiation of movements, Exp. Brain Res., 71, 431-436, (1988)
[75] Segura, B.; Baggio, H. C.; Marti, M. J.; Valldeoriola, F.; Compta, Y.; Garcia-Diaz, A. I.; Vendrell, P.; Bargallo, N.; Tolosa, E.; Carme Junque, C., Cortical thinning associated with mild cognitive impairment in parkinson’s disease, Mov. Disord., 29, 1495-1503, (2014)
[76] Sharman, M.; Valabregue, R.; Perlbarg, V.; Marrakchi-Kacem, L.; Vidailhet, M.; Benali, H.; Brice, A.; Lehéricy, S., Parkinson’s disease patients show reduced cortical-subcortical sensorimotor connectivity, Mov. Disord., 28, 447-454, (2013)
[77] Shimamoto, S. A.; Ryapolova-Webb, E. S.; Ostrem, J. L.; Galifianakis, N. B.; Miller, K. J.; Starr, P. A., Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in parkinson’s disease, J. Neurosci., 33, 7220-7233, (2013)
[78] Shine, J. M.; Handojoseno, A. M.A.; Nguyen, T. N.; Tran, Y.; Naismith, S. L.; Nguyen, H.; Lewis, S. J., Abnormal patterns of theta frequency oscillations during the temporal evolution of freezing of gait in parkinson’s disease, Clin. Neurophysiol., 125, 569-576, (2014)
[79] Shouno, O.; Tachibana, Y.; Nambu, A.; Doya, K., Computational model of recurrent subthalamo-pallidal circuit for generation of Parkinsonian oscillations, Front. Neuroanat., 11, 21, (2017)
[80] Smith, Y., The thalamic regulation of striatal function in normal and Parkinsonian states, Brain Res. Bull., 78, 60-68, (2014)
[81] Soikkeli, R.; Partanen, J.; Soininen, H.; Pääkkönen, A.; Riekkinen, P. S., Slowing of EEG in parkinson’s disease, Electroencephalogr. Clin. Neurophysiol., 79, 159-165, (1991)
[82] Surmeier, D. J.; Guzman, J. N.; Sanchez-Padilla, J., Calcium, cellular aging, and selective neuronal vulnerability in parkinson’s disease, Cell Calcium, 47, 175-182, (2010)
[83] Surmeier, D. J.; Guzman, J. N.; Sanchez-Padilla, J.; Schumacker, P. T., The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in parkinson’s disease, Neurosci., 198, 221-231, (2011)
[84] Taylor, A. E.; Saint-Cyr, J. A.; Lang, A. E., Frontal lobe dysfunction in parkinson’s disease. the cortical focus of neostriatal outflow, Brain, 109, 845-883, (1986)
[85] Terman, D.; Rubin, J.; Yew, A.; Wilson, C. J., Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci., 22, 2963-2976, (2002)
[86] Tritsch, N. X.; Carter, A. G., Parkinson’s disease: a thalamostriatal rebalancing act?, Neuron, 89, 675-677, (2016)
[87] Udupa, K.; Bahl, N.; Ni, Z.; Gunraj, C.; Mazzella, F.; Moro, E.; Hodaie, M.; Lozano, A. M.; Lang, A. E.; Chen, R., Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in parkinson’s disease, J. Neurosci., 36, 396-404, (2016)
[88] Van Albada, S. J.; Gray, R. T.; Drysdale, P. M.; Robinson, P. A., Mean-field modeling of the basal ganglia-thalamocortical system. II: dynamics of Parkinsonian oscillations, J. Theor. Biol., 257, 664-688, (2009) · Zbl 1400.92129
[89] Van Albada, S. J.; Robinson, P. A., Mean-field modeling of the basal ganglia-thalamocortical system. I: firing rates in healthy and Parkinsonian states, J. Theor. Biol., 257, 642-663, (2009) · Zbl 1400.92130
[90] Villalba, R. M.; Wichmann, T.; Smith, Y., Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of parkinson’s disease, Brain Struct. Funct., 219, 381-394, (2014)
[91] Vogels, T. P.; Rajan, K.; Abbott, L. F., Neural network dynamics, Annu. Rev. Neurosci., 28, 357-376, (2005)
[92] Yang, B.; Li, M.; Tang, W.; Liu, W.; Zhang, S.; Chen, L.; Xia, J., Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma, Nat. Commun., 9, 678, (2018)
[93] Yelnik, J.; Francis, C.; Percheron, G.; Tandé, D., Morphological taxonomy of the neurons of the primate striatum, J. Comp. Neurol., 313, 273-294, (1991)
[94] Zhang, W.; Zeng, T.; Liu, X.; Chen, L., Diagnosing phenotypes of single-sample individuals by edge biomarkers, J. Mol. Cell Biol., 7, 231-241, (2015)
[95] Zhao, J.; Zhou, Y.; Zhang, X.; Chen, L., Part mutual information for quantifying direct associations in networks, Proc. Natl. Acad. Sci. USA, 113, 5130-5135, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.