×

Open problems and conjectures related to the theory of mathematical quasicrystals. (English) Zbl 1349.52020

Summary: This list of problems arose as a collaborative effort among the participants of the Arbeitsgemeinschaft on Mathematical Quasicrystals, which was held at the Mathematisches Forschungsinstitut Oberwolfach in October 2015. The purpose of our meeting was to bring together researchers from a variety of disciplines, with a common goal of understanding different viewpoints and approaches surrounding the theory of mathematical quasicrystals. The problems below reflect this goal and this diversity and we hope that they will motivate further cross-disciplinary research and lead to new advances in our overall vision of this rapidly developing field.

MSC:

52C23 Quasicrystals and aperiodic tilings in discrete geometry
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akiyama, S., Gähler, F., Lee, J.-L.: Determining pure discrete spectrum for some self-affine tilings. DMTCS 16(3), 305-316 (2014) · Zbl 1400.37019
[2] Akiyama, S., Barge, M., Berthé, V., Lee, J.-L., Siegel, A.: On the Pisot substitution conjecture. In: Kellendonk, J., Lenz, D., Savinien, J. (eds.) Mathematics of Aperiodic Order. Progress in Mathematics, vol. 309, pp. 33-72 (2015) · Zbl 1376.37043
[3] Alestalo, P., Trotsenko, D.A., Väisälä, J.: Linear biLipschitz extension property. Sibirsk. Mat. Zh. 44(6), 1226-1238 (1993) [Translation into English in Sib. Math. J. 44(6), 959-968 (1993)] · Zbl 1063.30019
[4] Anderson, J.E., Putnam, I.F.: Topological invariants for substitution tilings and their associated \[C^*\]∗-algebras. Ergod. Theory Dyn. Syst. 18(3), 50-537 (1998) · Zbl 1053.46520 · doi:10.1017/S0143385798100457
[5] Baake, M., Grimm, U.: Aperiodic Order, vol. 1. A Mathematical Invitation. Encyclopedia of Mathematics and its Applications, vol. 149. Cambridge University Press, Cambridge (2013) · Zbl 1295.37001
[6] Baake, M., Frettlöh, D., Grimm, U.: A radial analogue of Poisson’s summation formula with applications to powder diffraction and pinwheel patterns. J. Geom. Phys. 57, 1331-1343 (2007) · Zbl 1185.37029 · doi:10.1016/j.geomphys.2006.10.009
[7] Barge, M.: Factors of Pisot tiling spaces and the coincidence rank conjecture. Bull. Soc. Math. Fr. 143, 357-381 (2015a) · Zbl 1351.37072
[8] Barge, M.: The Pisot conjecture for \[\beta\] β-substitutions (2015b) (preprint). arXiv:1505.04408 · Zbl 1351.37072
[9] Barge, M.: Pure discrete spectrum for a class on one-dimensional substitution tiling systems. Discret. Cont. Dyn. Syst. A 36, 1159-1173 (2016) · Zbl 1338.37014 · doi:10.3934/dcds.2016.36.1159
[10] Barge, M., Bruin, H., Jones, L., Sadun, L.: Homological Pisot substitutions and exact regularity. Isr. J. Math. 188, 281-300 (2012) · Zbl 1257.37010 · doi:10.1007/s11856-011-0123-4
[11] Bellissard, J., Iochum, B., Scoppola, E., Testard, D.: Spectral properties of one-dimensional quasicrystals. Commun. Math. Phys. 125, 527-543 (1989) · Zbl 0825.58010 · doi:10.1007/BF01218415
[12] Bleher, P.M., Homma, Y., Ji, L.L., Roeder, R.K.W., Shen, J.D.: Nearest neighbor distances on a circle: multidimensional case. J. Stat. Phys. 146(2), 446-465 (2012) · Zbl 1237.81075 · doi:10.1007/s10955-011-0367-8
[13] Burago, D., Kleiner, B.: Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps. Geom. Funct. Anal. 8(2), 273-282 (1998) · Zbl 0902.26004 · doi:10.1007/s000390050056
[14] Burago, D., Kleiner, B.: Rectifying separated nets. Geom. Funct. Anal. 12(1), 80-92 (2002) · Zbl 1165.26007 · doi:10.1007/s00039-002-8238-8
[15] Conway, J., Radin, C.: Quaquaversal tilings and rotations. Invent. Math. 132, 179-188 (1998) · Zbl 0913.52009 · doi:10.1007/s002220050221
[16] Cortez, M.I., Navas, A.: Some examples of non-rectifiable, repetitive Delone sets (2016) (preprint). arXiv:1401.7927 · Zbl 1378.37037
[17] Damanik, D., Tcheremchantsev, S.: A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators. Discrete Contin. Dyn. Syst. A 28, 1381-1412 (2010) · Zbl 1198.81085 · doi:10.3934/dcds.2010.28.1381
[18] Damanik, D., Killip, R., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals. III. \[ \alpha\] α-continuity. Commun. Math. Phys. 212(1), 191-204 (2000) · Zbl 1045.81024 · doi:10.1007/s002200000203
[19] de la Harpe, P.: Spaces of closed subgroups of locally compact groups (2016). arXiv:0807.2030 · Zbl 1352.22001
[20] Geelen, J.F., Simpson, R.J.: A two dimensional Steinhaus theorem. Australas. J. Combin. 8, 169-197 (1993) · Zbl 0804.11020
[21] Grimm, U., Deng, X.: Some comments on pinwheel tilings and their diffraction. J. Phys. Conf. Ser. 284, 012032 (2011) · doi:10.1088/1742-6596/284/1/012032
[22] Haynes, A.: Equivalence classes of codimension one cut-and-project nets. Ergod. Theory Dyn. Syst. 36(3), 816-831 (2016). doi:10.1017/etds.2014.90 · Zbl 1356.37009
[23] Haynes, A., Koivusalo, H.: Constructing bounded remainder sets and cut-and-project sets which are bounded distance to lattices. Isr. J. Math. 212(1), 189-201 (2016). doi:10.1007/s11856-016-1283-z · Zbl 1341.11043
[24] Haynes, A., Kelly, M., Weiss, B.: Equivalence relations on separated nets arising from linear toral flows. Proc. Lond. Math. Soc. (3) 109(5), 1203-1228 (2014) · Zbl 1351.37101
[25] Haynes, A., Koivusalo, H., Walton, J.: A characterization of linearly repetitive cut and project sets (2016a) (submitted). arXiv:1503.04091 · Zbl 1384.52018
[26] Haynes, A., Koivusalo, H., Walton, J.: Perfectly ordered quasicrystals and the Littlewood conjecture (2016b) (submitted). arXiv:1506.05649 · Zbl 1394.11058
[27] Haynes, A., Koivusalo, H., Sadun, L., Walton, J.: Gaps problems and frequencies of patches in cut and project sets (2016c) (submitted). arXiv:1411.0578 · Zbl 1371.11110
[28] Hollander, M., Solomyak, B.: Two-symbol Pisot substitutions have pure discrete spectrum. Ergod. Theory Dyn. Syst. 23, 533-640 (2003) · Zbl 1031.11010 · doi:10.1017/S0143385702001384
[29] Julien, A.: Complexity and cohomology for cut-and-projection tilings. Ergod. Theory Dyn. Syst. 30(2), 48-523 (2010) · Zbl 1185.37031 · doi:10.1017/S0143385709000194
[30] Kamae, T., Zamboni, L.: Maximal pattern complexity for discrete systems. Ergod. Theory Dyn. Syst. 22(4), 1201-1214 (2002a) · Zbl 1014.37003
[31] Kamae, T., Zamboni, L.: Sequence entropy and the maximal pattern complexity of infinite words. Ergod. Theory Dyn. Syst. 22(4), 1191-1199 (2002b) · Zbl 1014.37004
[32] Lagarias, J.C., Pleasants, P.A.B.: Repetitive Delone sets and quasicrystals. Ergod. Theory Dyn. Syst. 23(3), 83-867 (2003) · Zbl 1062.52021 · doi:10.1017/S0143385702001566
[33] Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications. Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press, Cambridge (2002) · Zbl 1001.68093
[34] Marklof, J.: Kinetic limits of dynamical systems. In: Dolgopyat, D., Pesin, Y., Pollicott, M., Stoyanov, L. (eds.) Hyperbolic Dynamics, Fluctuations and Large Deviations. Proceedings of Symposia in Pure Mathematics, pp. 195-223. American Mathematical Society, Providence (2015) · Zbl 1359.82021
[35] Marklof, J., Strömbergsson, A.: Free path lengths in quasicrystals. Commun. Math. Phys. 330, 723-755 (2014) · Zbl 1296.82050 · doi:10.1007/s00220-014-2011-3
[36] McMullen, C.T.: Lipschitz maps and nets in Euclidean space. Geom. Funct. Anal. 8(2), 304-314 (1998) · Zbl 0941.37030 · doi:10.1007/s000390050058
[37] Mendes, P., Oliveira, F.: On the topological structure of the arithmetic sum of two Cantor sets. Nonlinearity 7(2), 329-343 (1994) · Zbl 0839.54027 · doi:10.1088/0951-7715/7/2/002
[38] Miękisz, J.: An ultimate frustration in classical lattice-gas models. J. Stat. Phys. 90, 285-300 (1998) · Zbl 0946.82001 · doi:10.1023/A:1023264004272
[39] Miękisz, J.: Classical lattice-gas models of quasicrystals. J. Stat. Phys. 95, 835-850 (1999) · Zbl 1005.82500 · doi:10.1023/A:1004542115011
[40] Moody, R.V., Postnikoff, D., Strungaru, N.: Circular symmetry of pinwheel diffraction. Ann. Henri Poincaré 7, 711-730 (2006) · Zbl 1099.52007 · doi:10.1007/s00023-006-0266-8
[41] Moustafa, H.: PV cohomology of the pinwheel tilings, their integer group of coinvariants and gap-labeling. Commun. Math. Phys. 298, 369-405 (2010) · Zbl 1231.37010 · doi:10.1007/s00220-010-1070-3
[42] Navas, A.: A remark concerning bi-Lipschitz equivalence of Delone sets (2016). Notes available from the author (not intended for publication) · Zbl 1366.37041
[43] Queffélec, M.: Substitution Dynamical Systems-Spectral Analysis. Lecture Notes in Mathematics, vol. 1294, 2nd edn. Springer, Berlin (2010) · Zbl 1225.11001
[44] Radin, C.: The pinwheel tilings of the plane. Ann Math. 139(3), 661-702 (1994) · Zbl 0808.52022 · doi:10.2307/2118575
[45] Sadun, L.: Topology of Tiling Spaces. University Lecture Series, vol. 46. American Mathematical Society, Providence (2008) · Zbl 1166.52001
[46] Sirvent, V.F., Solomyak, B.: Pure discrete spectrum for one-dimensional substitution systems of Pisot type. Can. Math. Bull. 45, 697-710 (2002) · Zbl 1038.37008 · doi:10.4153/CMB-2002-062-3
[47] Solan, O., Solomon, Y., Weiss, B.: On problems of Danzer and Gowers and dynamics on the space of closed subsets of \[R^d\] Rd (2015) (preprint) · Zbl 1405.37015
[48] Solomyak, B.: Dynamics of tiling spaces. Ergod. Theory Dyn. Syst. 17, 695-738 (1997) · Zbl 0884.58062 · doi:10.1017/S0143385797084988
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.