zbMATH — the first resource for mathematics

On the semi-center of a universal enveloping algebra. (English) Zbl 0594.17010
Let \(U\) denote the universal enveloping algebra of a non-zero finite dimensional Lie algebra \({\mathfrak g}\) over a field \(k\) of characteristic zero and let \(D\) denote the division ring of quotients of \(U\). Let \(k'\) denote the algebraic closure of \(k\) and \(U'\) the universal enveloping algebra of \({\mathfrak g}'={\mathfrak g}\otimes_k k'.\) Using the fact that the semi-center \(\mathrm{Sz}(U')\) is a UFD [C. Moeglin, C. R. Acad. Sci., Paris, Sér. A 282, 1269–1272 (1976; Zbl 0338.17002)] it is proved that the ring \(U\cap \mathrm{Sz}(U')\) is also a UFD and hence any non-zero semi-invariant of \(U\) can be factored in a unique way as a product of irreducible semi-invariants.
Another result of C. Moeglin [Bull. Soc. Math. Fr. 108, 143–186 (1980; Zbl 0447.17008)] generalized independently by M. P. Malliavin [Lect. Notes Math. 924, 157–166 (1982; Zbl 0482.17003)] and V. A. Ginzburg [On the ideals of U(\({\mathfrak g})\) (to appear)] states that any non-zero ideal of \(U\) contains a non-zero semi-invariant and this fact is also extremely useful.
Let \(\Lambda({\mathfrak g})\) (respectively \(\Lambda_ D({\mathfrak g}))\) be the set of all \(\lambda\in {\mathfrak g}^*\) such that there exists a non-zero semi-invariant of \(U\) (respectively \(D\)) relative to \(\lambda\). \(\Lambda({\mathfrak g})\) is a semigroup which need not be finitely generated and S. Montgomery [Proc. Am. Math. Soc. 83, 263–268 (1981; Zbl 0474.16003)] has shown that the group \(\Lambda_ D({\mathfrak g})\) is isomorphic to Kharchenko’s group of \(X\)-inner automorphisms of \(U\). It is shown that \(\Lambda_ D({\mathfrak g})\) is the additive subgroup of \({\mathfrak g}^*\) generated by \(\Lambda({\mathfrak g}).\)
Let \({\mathfrak g}_{\Lambda}\) denote the intersection of \(\mathrm{ker}\,\lambda\) for \(\lambda\in \Lambda ({\mathfrak g})\). Then \({\mathfrak g}_{\Lambda}\) is a characteristic ideal of \({\mathfrak g}\) such that \(Z(U)\subset \mathrm{Sz}(U)\subset Z(U_{\Lambda})=\mathrm{Sz}(U_{\Lambda}),\) where \(Z(R)\) denotes the center of the ring \(R\) and \(U_{\Lambda}\) denotes the universal enveloping algebra of \({\mathfrak g}_{\Lambda}\). Moreover \(\mathrm{Sz}(U)=Z(U_{\Lambda})\) in case \(k\) is algebraically closed and either \({\mathfrak g}\) is almost algebraic or Frobenius.
A brief section deals with a construction of semi-invariants. Various characterizations for \(U\) to be primitive are given in terms of semi-invariants, for example there exists a non-zero semi-invariant e which is contained in each non-zero prime ideal of \(U\).

17B35 Universal enveloping (super)algebras
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
16P40 Noetherian rings and modules (associative rings and algebras)
16Dxx Modules, bimodules and ideals in associative algebras
13F15 Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial)
Full Text: DOI
[1] Asano, K., Zur arithmetik in schiefringen, Osaka math. J., 1, 98-134, (1949) · Zbl 0041.16601
[2] Auslander, L.; Brezin, J., Almost algebraic Lie algebras, J. algebra, 8, 295-313, (1968) · Zbl 0197.03002
[3] Borho, W.; Gabriel, P.; Rentschler, R., Primideale in einhu¨llenden auflo¨sbarer Lie-algebren, ()
[4] Chamarie, M., Maximal orders applied to enveloping algebras, (), 19-27 · Zbl 0445.16005
[5] Chevalley, C., ()
[6] Dixmier, J., Enveloping algebras, () · Zbl 0867.17001
[7] Dixmier, J., Sur le centre de l’alge´bre enveloppante d’une alge‘bre de Lie, C. R. acad. sci. Paris A, 265, 408-410, (1967) · Zbl 0149.27804
[8] Dixmier, J., Sur LES alge‘bres enveloppantes de sl(n,C), Bull. sci. math., 100, 57-95, (1976) · Zbl 0328.17003
[9] Dixmier, J.; Duflo, M.; Vergne, M., Sur la repre´sentation coadjointe d’une alge‘bre de Lie, Compositio math., 25, 194, 309-323, (1974) · Zbl 0296.17009
[10] \scV. Ginzburg, On the ideals of U(g), to appear.
[11] Jacobson, N., Lie algebras, () · JFM 61.1044.02
[12] \scM. P. Malliavin, “Ultra produit d’alge‘bres de Lie,” Lecture Notes in Mathematics, Springer-Verlag, New York/Berlin, in press.
[13] Moeglin, C., Factori‘alitédans LES alge‘bres enveloppantes, C. R. acad.sci. Paris A, 282, 1269-1272, (1976)
[14] Moeglin, C., Ide´aux bilate‘res des alge‘bres enveloppantes, Bull. soc. math. France, 108, 143-186, (1980)
[15] Moeglin, C., Ide´aux primitifs des alge‘bres enveloppantes, J. math. pures appl., 59, 265-336, (1980) · Zbl 0454.17006
[16] Montgomery, S., X-inner automorphisms of filtered algebras, (), 263-268 · Zbl 0474.16003
[17] Ooms, A.I., On Lie algebras having a primitive universal enveloping algebra, J. algebra, 32, 488-500, (1974) · Zbl 0355.17014
[18] Ooms, A.I., On Lie algebras with primitive envelopes, supplements, (), 67-72 · Zbl 0351.17009
[19] Ooms, A.I., On Frobenius Lie algebras, Comm. algebra, 8, 13-52, (1980) · Zbl 0421.17004
[20] Rais, M., La repre´sentation coadjointe du groupe affine, Ann. inst. Fourier (Grenoble), 28, 1, 207-237, (1978) · Zbl 0499.22022
[21] Rentschler, R.; Vergne, M., Sur le semi-centre du corps enveloppant d’une algebre de Lie, Ann. sci. ecole norm. sup. (4), 6, 389-405, (1973) · Zbl 0293.17007
[22] \scA. W. Chatters, Noncommutative unique factorization domains,Proc. Cambridge Philos. Soc., in press.
[23] Conze, N., Alge‘bres d’operateurs diffe´rentiels et quotients des alge‘bres enveloppantes, Bull. soc. math. France, 102, 379-415, (1974)
[24] \scM. P. Gilchrist and M. K. Smith, Noncommutative UFD’s are often PID’s, to appear. · Zbl 0541.16002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.