×

zbMATH — the first resource for mathematics

Quasitriangular (\(G\)-cograded) multiplier Hopf algebras. (English) Zbl 1079.16022
Results concerning the antipode of quasitriangular Hopf algebras are discussed for multiplier Hopf algebras. The focus of the paper lies on the class of \(G\)-cograded multiplier Hopf algebras, where \(G\) is a group.

MSC:
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
16W50 Graded rings and modules (associative rings and algebras)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abd El-hafez, A.T.; Delvaux, L.; Van Daele, A., Group-cograded multiplier Hopf (*-)algebras, Algebr. Represent. Theory, submitted for publication · Zbl 1129.16027
[2] Beattie, M.; Dǎscǎlescu, S.; Grünenfelder, L.; Nǎstǎsescu, C., Finiteness conditions, co-Frobenius Hopf algebras and quantum groups, J. algebra, 200, 312-333, (1998) · Zbl 0902.16028
[3] Delvaux, L., Pairing and Drinfel’d double of ore-extensions, Comm. algebra, 29, 7, 3167-3177, (2001) · Zbl 0985.16020
[4] Delvaux, L.; Van Daele, A., The Drinfel’d double of multiplier Hopf algebras, J. algebra, 272, 1, 273-291, (2004) · Zbl 1044.16028
[5] Delvaux, L.; Van Daele, A., The Drinfel’d double versus the Heisenberg double for an algebraic quantum group, J. pure appl. algebra, 190, 59-84, (2004) · Zbl 1056.16027
[6] Delvaux, L.; Van Daele, A., The Drinfel’d double for group-cograded multiplier Hopf algebras · Zbl 1161.16028
[7] Drabant, B.; Van Daele, A., Pairing and quantum double of multiplier Hopf algebras, Algebr. represent. theory, 4, 109-132, (2001) · Zbl 0993.16024
[8] Drabant, B.; Van Daele, A.; Zhang, Y., Actions of multiplier hops algebras, Comm. algebra, 27, 9, 4117-4172, (1991) · Zbl 0951.16013
[9] Drinfel’d, V.G., Quantum groups, (), 789-820 · Zbl 0667.16003
[10] Drinfel’d, V.G., On almost cocommutative Hopf algebras, Leningrad math. J., 1, 321-342, (1990) · Zbl 0718.16035
[11] Kassel, C., Quantum groups, Grad. texts in math., vol. 155, (1995), Springer-Verlag New York · Zbl 0808.17003
[12] Majid, S., Foundations of quantum group theory, (1995), Cambridge Univ. Press Cambridge · Zbl 0857.17009
[13] Radford, D.E., The order of the antipode of a finite-dimensional Hopf algebra is finite, Amer. J. math., 98, 333-355, (1976) · Zbl 0332.16007
[14] Radford, D.E., On the antipode of a quasitriangular Hopf algebra, J. algebra, 151, 1-11, (1992) · Zbl 0767.16016
[15] Schauenburg, P., On coquasitriangular Hopf algebras and the quantum yang – baxter equation, () · Zbl 0841.16039
[16] Turaev, V.G., Homotopy field theory in dimension 3 and crossed group-categories, preprint
[17] Van Daele, A., Multiplier Hopf algebras, Trans. amer. math. soc., 342, 2, 917-932, (1994) · Zbl 0809.16047
[18] Van Daele, A., An algebraic framework for group duality, Adv. math., 140, 323-366, (1998) · Zbl 0933.16043
[19] Van Daele, A.; Zhang, Y., A survey on multiplier Hopf algebras, (), 259-309 · Zbl 1020.16032
[20] Van Daele, A.; Zhang, Y., Multiplier Hopf algebras of discrete type, J. algebra, 214, 400-417, (1999) · Zbl 0931.16023
[21] Zhang, Y., The quantum double of a co-Frobenius Hopf algebra, Comm. algebra, 27, 3, 1413-1427, (1999) · Zbl 0921.16027
[22] Zunino, M., Double construction for crossed Hopf coalgebras, J. algebra, 278, 43-75, (2004) · Zbl 1058.16035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.