zbMATH — the first resource for mathematics

Group-cograded multiplier Hopf (\(*\)-)algebras. (English) Zbl 1129.16027
Let \(G\) be a group and assume that \((A_p)_{p\in G}\) is a family of algebras with identity. For each pair \(p,q\in G\), there is given a unital homomorphism \(\Delta_{p,q}\colon A_{pq}\to A_p\otimes A_q\) satisfying certain properties. The authors consider the direct sum \(A=\bigoplus_{p\in G}A_p\). \(A\) is an algebra in a natural way and the product is non-degenerate. The maps \(\Delta_{p, q}\) can be used to define a coproduct \(\Delta\) on \(A\) such that \((A,\Delta)\) is a multiplier Hopf algebra.
In the paper under review, the authors show that \(A\) is a group-cograded multiplier Hopf algebra, which is more general than the Hopf group-coalgebras as introduced by Turaev. Moreover, their point of view makes it possible to use results and techniques from the theory of multiplier Hopf algebras in the study of Hopf group-coalgebras (and generalizations). In addition, the authors study integrals, in general and in the case where the components are finite-dimensional. Using these ideas, the authors obtain most of the results of A. Virelizier [J. Pure Appl. Algebra 171, No. 1, 75-122 (2002; Zbl 1011.16023)] on this subject and consider them in the framework of multiplier Hopf algebras.
Reviewer: Li Fang (Hangzhou)

16W30 Hopf algebras (associative rings and algebras) (MSC2000)
16W50 Graded rings and modules (associative rings and algebras)
17B37 Quantum groups (quantized enveloping algebras) and related deformations
Full Text: DOI arXiv
[1] Abe, E.: Hopf Algebras. Cambridge University Press, UK (1977) · Zbl 0393.53018
[2] Delvaux, L.: Semi-direct products of multiplier Hopf algebras: smash coproducts. Comm. Algebra 30, 5979–5997 (2002) · Zbl 1038.16028 · doi:10.1081/AGB-120016027
[3] Delvaux, L., Van Daele, A.: The Drinfel’d double for group-cograded multiplier Hopf algebras. Preprint L.U.C. and K.U.Leuven. Server version math.QA/0404029. (To appear in Algebras and Representation Theory) (2004) · Zbl 1044.16028
[4] Landstad, M.B., Van Daele, A.: Discrete and compact subgroups of algebraic quantum groups I. University of Trondheim and K.U.Leuven (preprint) (2006)
[5] Sweedler, M.E.: Hopf Algebras. Mathematical Lecture Note Series, Benjamin, New York (1969) · Zbl 0194.32901
[6] Turaev, V.G.: Homotopy field theory in dimension 3 and crossed group-categories. IRMA, Strasbourg. Server version math.GT/0005291 (preprint) (2000)
[7] Van Daele, A.: Multiplier Hopf algebras. Trans. Amer. Math. Soc. 342, 917–932 (1994) · Zbl 0809.16047 · doi:10.2307/2154659
[8] Van Daele, A.: Discrete quantum groups. J. Algebra 180, 431–444 (1996) · Zbl 0864.17012 · doi:10.1006/jabr.1996.0075
[9] Van Daele, A.: The Haar measure on finite quantum groups. Proc. Amer. Math. Soc. 125, 3489–3500 (1997) · Zbl 0888.16023 · doi:10.1090/S0002-9939-97-04037-9
[10] Van Daele, A.: An algebraic framework for group duality. Adv. Math. 140, 323–366 (1998) · Zbl 0933.16043 · doi:10.1006/aima.1998.1775
[11] Van Daele, A., Zhang, Y.: Multiplier Hopf algebras of discrete type. J. Algebra 214, 400–417 (1999) · Zbl 0931.16023 · doi:10.1006/jabr.1998.7717
[12] Van Daele, A., Zhang, Y.: A survey on multiplier Hopf algebras. In: Caenepeel, S., Van Oystaeyen, F. (eds.) Proceedings of Hopf Algebras and Quantum Groups, Brussels, pp. 269–309. Marcel Dekker, New York (2000) · Zbl 1020.16032
[13] Virelizier, A.: Hopf group-coalgebras. J. Pure Appl. Algebra 171, 75–122 (2002) · Zbl 1011.16023 · doi:10.1016/S0022-4049(01)00125-6
[14] Wang, S.: Group twisted smash products and Doi–Hopf modules for T-coalgebras. Comm. Algebra 32, 3417–3436 (2004) · Zbl 1073.16034 · doi:10.1081/AGB-120039402
[15] Wang, S.: Group entwining structures and group-coalgebra Galois extensions. Comm. Algebra 32, 3437–3457 (2004) · Zbl 1071.16041 · doi:10.1081/AGB-120039403
[16] Zunino, M.: Double construction for crossed Hopf coalgebras. J. Algebra 278, 43–75 (2004) · Zbl 1058.16035 · doi:10.1016/j.jalgebra.2004.03.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.