×

zbMATH — the first resource for mathematics

An overview of multivariate data analysis. (English) Zbl 0252.62003

MSC:
62-02 Research exposition (monographs, survey articles) pertaining to statistics
62Hxx Multivariate analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Affifi, A.A.; Elashoff, R.M.; Affifi, A.A.; Elashoff, R.M.; Affifi, A.A.; Elashoff, R.M.; Affifi, A.A.; Elashoff, R.M., Missing observations in multivariate statistics. IV. A note on simple linear regression, J. amer. statist. assoc., J. amer. statist. assoc., J. amer. statist. assoc., J. amer. statist. assoc., 64, 359-365, (1969) · Zbl 0175.17103
[2] Anderson, T.W., ()
[3] Blalock, H.M., Path coefficients versus regression coefficients, Amer. J. sociol., 72, 675-676, (1967)
[4] Bock, R.D., Estimating multinomial response relation, () · Zbl 0237.62044
[5] Carroll, J.D.; Chang, Jih-Jie, Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition, Psychometrika, 35, 283-319, (1970) · Zbl 0202.19101
[6] Cattell, R.B.; Cattell, R.B., Factor analysis: an introduction to essentials. I. the purpose and underlying models. II. the role of factor analysis in research, Biometrics, Biometrics, 21, 405-435, (1965) · Zbl 0127.35902
[7] Cochran, W.G., The planning of observational studies in human populations, J. roy. statist. soc. ser. A, 128, 234-265, (1965)
[8] Dempster, A.P., ()
[9] Dempster, A.P., Model searching and estimation in the logic of inference, (), to appear · Zbl 0169.21301
[10] Duncan, O.D., Path analysis: sociological examples, Amer. J. sociology, 72, 1-16, (1966)
[11] Engelhardt, Max D., The technique of path coefficients, Psychometrika, 1, 287-293, (1936) · JFM 62.1380.13
[12] Fienberg, S.E., An iterative procedure for estimation in contingency tables, Ann. math. statist., 41, 907-917, (1970) · Zbl 0198.23401
[13] Gentleman, W.Morven; Gilbert, John P.; Tukey, J.W., The smearand-sweep analysis, (), 287-315
[14] Gnanadesikan, R.; Wilk, M.B., Data analytic methods in multivariate statistical analysis, (), 593-638
[15] Gnanadesikan, R.; Lee, E.T., Graphical techniques for internal comparisons amongst equal degree of freedom grouping in multiresponse experiments, Biometrika, 57, 229-238, (1970) · Zbl 0197.16301
[16] Goldberger, A.S., ()
[17] Golub, G.H., Matrix decompositions and statistical calculations, (), 365-398
[18] Goodman, Leo A., The multivariate analysis of qualitative data: interactions among multiple classifications, J. amer. statist. assoc., 65, 226-256, (1970)
[19] Gower, J.C., Comparison of some methods of cluster analysis, Biometrics, 23, 623-637, (1967)
[20] Gower, J.C., Minimum spanning trees and single linkage cluster analysis, Appl. statist., 18, 54-64, (1969)
[21] Harman, H.H., ()
[22] Hartigan, J.A., Representation of similarity matrices by trees, J. amer. statist. assoc., 62, 1140-1158, (1967)
[23] Hauck, W., A bibliography on causal inference, ()
[24] Ireland, C.T.; Kullback, S., Contingency tables with given marginals, Biometrika, 55, 179-188, (1968) · Zbl 0155.26701
[25] Johnson, S.C., Hierarchical clustering schemes, Psychometrika, 32, 241-254, (1967) · Zbl 1367.62191
[26] J√∂reskog, K.G., A general method for analysis of covariance structures, Biometrika, 57, 239-252, (1970) · Zbl 0195.48801
[27] ()
[28] ()
[29] Kruskal, J.B., Multidimensional scaling by optimizing goodness-of-fit to a non-metric hypothesis, Psychometrika, 29, 1-27, (1964) · Zbl 0123.36803
[30] Kruskal, J.B., Nonmetric multidimensional scaling: a numerical method, Psychometrika, 29, 115-129, (1964) · Zbl 0123.36804
[31] Kruskal, J.B.; Carroll, J.D., Geometrical models and badness-of-fit functions, (), 639-671
[32] ()
[33] Morrison, D.F., ()
[34] Muller, M.E., Computers as an instrument for data analysis, Technometrics, 12, 259-294, (1970)
[35] Shepard, R.N.; Shepard, R.N., The analysis of proximities: multinomial scaling with an unknown distance function I, II, Psychometrika, Psychometrika, 27, 219-246, (1962) · Zbl 0129.12103
[36] Shepard, R.N.; Carroll, J.D., Parametric representation of nonlinear data structures, (), 561-592
[37] Sokal, R.R.; Sneath, P.H.A., ()
[38] Tukey, J.W., Causation, regression and path analysis, (), 35-66
[39] Tukey, J.W., The future of data analysis, Ann. math. statist., 44, 1-67, (1962) · Zbl 0107.36401
[40] Turner, M.E.; Stevens, C.D., The regression analysis of causal paths, Biometrics, 15, 236-258, (1969) · Zbl 0099.14402
[41] Walker, S.H.; Duncan, D.B., Estimation of the probability of an event as a function of several independent variables, Biometrika, 54, 167-180, (1967) · Zbl 0159.47604
[42] Wampler, R.H., On the accuracy of least squares computer programs, J. amer. statist. assoc., 65, 549-565, (1970) · Zbl 0196.22405
[43] Wishart, D.M.G., An algorithm for hierarchical classification, Biometrics, 25, 165-170, (1969)
[44] Wold, H., Causal inference for observational data: A review of ends and means, J. roy. statist. soc. ser. A, 119, 28-61, (1956)
[45] Wold, H., Ends and means in econometric model-building, () · Zbl 0203.22501
[46] Wold, H., Forecasting by the chain principle, (), 5-36, No. 36 · Zbl 0128.13801
[47] Wright, Sewall, On the nature of size factors, Genetics, 3, 367-374, (1918)
[48] Wright, Sewall, The interpretation of multivariate systems, (), 11-34
[49] Wright, Sewall, Path coefficients or path regressions: alternative or complementary concepts, Biometrics, 16, 189-202, (1960) · Zbl 0099.14403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.