×

Switching interacting particle systems: scaling limits, uphill diffusion and boundary layer. (English) Zbl 1483.60067

Summary: This paper considers three classes of interacting particle systems on \(\mathbb{Z}\): independent random walks, the exclusion process, and the inclusion process. Particles are allowed to switch their jump rate (the rate identifies the type of particle) between 1 (fast particles) and \(\epsilon\in[0,1]\) (slow particles). The switch between the two jump rates happens at rate \(\gamma\in(0,\infty)\). In the exclusion process, the interaction is such that each site can be occupied by at most one particle of each type. In the inclusion process, the interaction takes places between particles of the same type at different sites and between particles of different type at the same site. We derive the macroscopic limit equations for the three systems, obtained after scaling space by \(N^{-1}\), time by \(N^2\), the switching rate by \(N^{-2}\), and letting \(N\rightarrow \infty\). The limit equations for the macroscopic densities associated to the fast and slow particles is the well-studied double diffusivity model. This system of reaction-diffusion equations was introduced to model polycrystal diffusion and dislocation pipe diffusion, with the goal to overcome the limitations imposed by Fick’s law. In order to investigate the microscopic out-of-equilibrium properties, we analyse the system on \([N]=\{1,\dots,N\}\), adding boundary reservoirs at sites 1 and \(N\) of fast and slow particles, respectively. Inside \([N]\) particles move as before, but now particles are injected and absorbed at sites 1 and \(N\) with prescribed rates that depend on the particle type. We compute the steady-state density profile and the steady-state current. It turns out that uphill diffusion is possible, i.e., the total flow can be in the direction of increasing total density. This phenomenon, which cannot occur in a single-type particle system, is a violation of Fick’s law made possible by the switching between types. We rescale the microscopic steady-state density profile and steady-state current and obtain the steady-state solution of a boundary-value problem for the double diffusivity model.

MSC:

60G50 Sums of independent random variables; random walks
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aifantis, EC, A new interpretation of diffusion in high-diffusivity paths: a continuum approach, Acta Metall., 27, 683-691 (1979)
[2] Aifantis, EC; Hill, JM, On the theory of diffusion in media with double diffusivity I. Basic mathematical results, Q. J. Mech. Appl. Math., 33, 1-21 (1980) · Zbl 0435.73108
[3] Amir, G., Bahadoran, C., Busani, O., Saada, E.: Invariant measures for multilane exclusion process. Preprint https://arxiv.org/abs/2105.12974
[4] Bernstein, DS; So, W., Some explicit formulas for the matrix exponential, IEEE Trans. Autom. Control, 38, 8, 1228-1232 (1993) · Zbl 0784.93036
[5] Blath, J.; González Casanova, A.; Kurt, N.; Wilke-Berenguer, M., The seed bank coalescent with simultaneous switching, Electron. J. Probab., 25, 1-21 (2020) · Zbl 1435.60058
[6] Blath, J.; Kurt, N.; Baake, E.; Wakolbinger, A., Population genetic models of dormancy, Probabilistic Structures in Evolution. EMS Series of Congress Reports, 247-265 (2021), Zurich: European Mathematical Society Publishing House, Zurich · Zbl 1465.92003
[7] Bodineau, T.; Lagouge, M., Large deviations of the empirical currents for a boundary-driven reaction diffusion model, Ann. Appl. Probab., 22, 2282-2319 (2012) · Zbl 1269.60029
[8] Boldrighini, C.; De Masi, A.; Pellegrinotti, A., Nonequilibrium fluctuations in particle systems modelling reaction-diffusion equation, Stoch. Proc. Appl., 42, 1-30 (1992) · Zbl 0758.60107
[9] Carinci, G.; Giardinà, C.; Giberti, C.; Redig, F., Duality for stochastic models of transport, J. Stat. Phys., 152, 657-697 (2013) · Zbl 1345.60083
[10] Cavalcanti, M.; Cavalcanti, VD; Tebou, L., Stabilization of the wave equation with localized compensating frictional and Kelvin-Voigt dissipating mechanism, Electron. J. Differ. Equ., 83, 1-18 (2017) · Zbl 1369.93479
[11] Chen, J.P., Sau, F.: Higher order hydrodynamics and equilibrium fluctuations of interacting particle systems. Preprint https://arxiv.org/abs/2008.13403 · Zbl 1475.60193
[12] Cividini, J.; Mukamel, D.; Posch, HA, Driven tracer with absolute negative mobility, J. Phys. A, 51, 085001 (2018) · Zbl 1387.82035
[13] Colangeli, M.; De Masi, A.; Presutti, E., Microscopic models for uphill diffusion, J. Phys. A, 50, 435002 (2017) · Zbl 1375.82084
[14] Colangeli, M.; Giardinà, C.; Giberti, C.; Vernia, C., Non-equilibrium two dimensional Ising model with stationary uphill diffusion, Phys. Rev. E, 96, 052137 (2017)
[15] Crampé, N.; Mallick, K.; Ragoucy, E.; Vanicat, M., Open two-species exclusion processes with integrable boundaries, J. Phys. A, 48, 175002 (2015) · Zbl 1325.82005
[16] Demaerel, T.; Maes, C., Active processes in one dimension, Phys. Rev. E, 97, 032604 (2018)
[17] Derrida, B.; Evans, MR; Hakim, V.; Pasquier, V., Exact solution of a \(1\) D asymmetric exclusion model using a matrix formulation, J. Phys. A, 26, 1493-1517 (1993) · Zbl 0772.60096
[18] De Masi, A.; Ferrari, PA; Lebowitz, JL, Rigorous derivation of reaction-diffusion equations with fluctuations, Phys. Rev. Lett., 55, 1947-1949 (1985)
[19] De Masi, A.; Ferrari, PA; Lebowitz, JL, Reaction-diffusion equations for interacting particle systems, J. Stat. Phys., 44, 589-644 (1986) · Zbl 0629.60107
[20] De Masi, A.; Presutti, E., Mathematical Methods for Hydrodynamic Limits (1991), Berlin: Springer-Verlag, Berlin · Zbl 0754.60122
[21] De Masi, A.; Merola, A.; Presutti, E., Reservoirs, Fick law and the Darken effect, J. Math. Phys., 62, 073301 (2021) · Zbl 1475.35325
[22] Derrida, B.; Lebowitz, JL; Speer, ER, Large deviation of the density profile in the steady state of the open symmetric simple exclusion process, J. Stat. Phys., 107, 599-634 (2002) · Zbl 1067.82047
[23] Dhar, A.; Kundu, A.; Majumdar, SN; Sabhapandit, S.; Schehr, G., Run-and-tumble particle in one-dimensional confining potential: steady state, relaxation and first passage properties, Phys. Rev. E, 99, 032132 (2019)
[24] Ferrari, PA; Martin, JB, Multiclass processes, dual points and M/M/1 queues, Markov Proc. Relat. Fields, 12, 273-299 (2006) · Zbl 1147.60059
[25] Ferrari, PA; Martin, JB, Stationary distributions of multi-type totally asymmetric exclusion processes, Ann. Probab., 35, 807-832 (2007) · Zbl 1117.60089
[26] Floreani, S.; Redig, F.; Sau, F., Hydrodynamics for the partial exclusion process in random environment, Stoch. Proc. Appl., 142, 124-158 (2021) · Zbl 1479.60194
[27] Floreani, S., Redig, F., Sau, F.: Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations. Preprint https://arxiv.org/abs/2007.08272
[28] Fodor, É.; Marchetti, C., The statistical physics of active matter: from self-catalytic colloids to living cells, Physica A, 504, 106-120 (2018) · Zbl 1514.82129
[29] Friedlin, M., Functional Integration and Partial Differential Equations. Annals of Mathematics Studies (1985), Princeton: Princeton University Press, Princeton · Zbl 0568.60057
[30] Giardinà, C.; Kurchan, J.; Redig, F.; Vafayi, K., Duality and hidden symmetries in interacting particle systems, J. Stat. Phys., 135, 25-55 (2009) · Zbl 1173.82020
[31] Greven, A., den Hollander, F., Oomen, M.: Spatial populations with seed-bank: well-posedness, duality and equilibrium. Preprint https://arxiv.org/abs/2004.14137
[32] Großmann, R.; Peruani, F.; Bär, M., Diffusion properties of active particles with directional reversal, New J. Phys., 18, 043009 (2016)
[33] Hill, JM; Aifantis, EC, On the theory of diffusion in media with double diffusivity II. Boundary-value problems, Q. J. Mech. Appl. Math., 33, 23-42 (1980) · Zbl 0435.73109
[34] Hill, JM, A discrete random walk model for diffusivity in media with double diffusivity, J. Austral. Math. Soc., 22, 58-74 (1980) · Zbl 0443.76080
[35] Hill, JM, On the solution of reaction-diffusion equations, IMA J. Appl. Math., 27, 177-194 (1981) · Zbl 0467.35052
[36] Karatzas, I.; Shreve, SE, Brownian Motion and Stochastic Calculus (1991), New York: Springer-Verlag, New York · Zbl 0734.60060
[37] Kipnis, C.; Marchioro, C.; Presutti, E., Heat flow in an exactly solvable model, J. Stat. Phys., 27, 65-74 (1982)
[38] Kourbane-Houssene, M.; Erignoux, C.; Bodineau, T.; Tailleur, J., Exact hydrodynamic description of active lattice gases, Phys. Rev. Lett., 120, 268003 (2018)
[39] Krámli, A.; Simányi, N.; Szász, D., Random walks with internal degrees of freedom, Probab. Theor. Relat. Fields, 72, 603-617 (1986) · Zbl 0577.60069
[40] Krishna, R., Uphill diffusion in multicomponent mixtures, Chem. Soc. Rev., 44, 2812-2836 (2015)
[41] Kuan, J., Probability distributions of multi-species q-TAZRP and ASEP as double cosets of parabolic subgroups, Ann. Henri Poincaré, 20, 1149-1173 (2019) · Zbl 1407.05248
[42] Lennon, J.T., den Hollander, F., Wilke Berenguer, M., Blath, J.: Principle of seed banks and the emergence of complexity from dormancy. Preprint https://arxiv.org/abs/2012.00072
[43] Liggett, TM, Interacting Particle Systems (2005), Berlin: Springer-Verlag, Berlin · Zbl 1103.82016
[44] Malakar, K.; Jemseena, V.; Kundu, A.; Kumar, KV; Sabhapandit, S.; Majumdar, SN; Redner, S.; Dhar, A., Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension, J. Stat. Mech., 4, 043215 (2018) · Zbl 1459.82182
[45] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences (1983), New York: Springer-Verlag, New York · Zbl 0516.47023
[46] Pietzonka, P.; Kleinbeck, K.; Seifert, U., Extreme fluctuations of active Brownian motion, New J. Phys., 18, 052001 (2016)
[47] Redig, F.; Sau, F., Factorized duality, stationary product measures and generating functions, J. Stat. Phys., 172, 980-1008 (2018) · Zbl 1407.82032
[48] Seppäläinen, T.: Translation Invariant Exclusion Processes (monograph in progress) (2016)
[49] Yin, G.; Zhu, C., Properties of solutions of stochastic differential equations with continuous state dependent switching, J. Differ. Equ., 249, 2409-2439 (2010) · Zbl 1202.60093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.