×

A coupled approximate deconvolution and dynamic mixed scale model for large eddy simulation. (English) Zbl 1232.76019

Summary: We report on large-eddy simulations of incompressible Newtonian fluid flows with approximate deconvolution models based on the van Cittert method. The Legendre spectral element method is used for the spatial discretization to solve the filtered Navier-Stokes equations. A novel variant of approximate deconvolution models blended with a mixed scale model using a dynamic evaluation of the subgrid-viscosity constant is proposed. This model is validated by comparing the large-eddy simulation with the direct numerical simulation of the flow in a lid-driven cubical cavity, performed at a Reynolds number of 12,000. Subgrid modeling in the case of a flow with coexisting laminar, transitional and turbulent zones such as the lid-driven cubical cavity flow represents a challenging problem. Moreover, the coupling with the spectral element method having very low numerical dissipation and dispersion builds a well suited framework to analyze the efficiency of a subgrid model. First- and second-order statistics obtained using this new model are showing very good agreement with the direct numerical simulation. Filtering operations rely on an invertible filter applied in a modal basis and preserving the \(C^{0}\)-continuity across elements. No clipping on dynamic parameters is needed to preserve numerical stability.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M22 Spectral methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Stolz, S.; Adams, N. A., An approximate deconvolution procedure for large-eddy simulation, Phys. Fluids, 11, 1699-1701 (1999) · Zbl 1147.76506
[2] Stolz, S.; Schlatter, P.; Kleiser, L., High-pass filtered eddy-viscosity models for large-eddy simulations of transitional and turbulent flow, Phys. Fluids, 17, 065103 (2005) · Zbl 1187.76501
[3] Stolz, S.; Adams, N. A.; Kleiser, L., The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction, Phys. Fluids, 13, 2985-3001 (2001) · Zbl 1184.76531
[4] Schlatter, P.; Stolz, S.; Kleiser, L., LES of transitional flows using the approximate deconvolution model, Int. J. Heat Fluid Flow, 25, 549-558 (2004)
[5] Gullbrand, J.; Chow, F. K., The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering, J. Fluid Mech., 495, 323-341 (2003) · Zbl 1077.76032
[6] Rembold, B.; Kleiser, L., Noise prediction of a rectangular jet using large eddy simulation, AIAA J., 42, 1823-1831 (2004)
[7] Shotorban, B.; Mashayek, F., Modeling subgrid-scale effects on particles by approximate deconvolution, Phys. Fluids, 17, 081701 (2005) · Zbl 1187.76486
[8] R. von Kaenel, Large-eddy simulation of compressible flow using the finite-volume method, Ph.D. Thesis, no. 15255, Swiss Federal Institute of Technology, ETH Zürich, 2003.; R. von Kaenel, Large-eddy simulation of compressible flow using the finite-volume method, Ph.D. Thesis, no. 15255, Swiss Federal Institute of Technology, ETH Zürich, 2003.
[9] von Kaenel, R.; Kleiser, L.; Adams, N. A.; Vos, J. B., Large eddy simulation of shock-turbulence interaction, AIAA J., 42, 2516-2528 (2004)
[10] Iliescu, T.; Fischer, P. F., Large eddy simulation of turbulent channel flows by the rational large eddy simulation model, Phys. Fluids, 15, 3036-3047 (2003) · Zbl 1186.76245
[11] C.D. Pruett, B.C. Thomas, C.E. Grosch, T.B. Gatski, A temporal approximate deconvolution model for large-eddy simulation, Phys. Fluids. 18, 028104.; C.D. Pruett, B.C. Thomas, C.E. Grosch, T.B. Gatski, A temporal approximate deconvolution model for large-eddy simulation, Phys. Fluids. 18, 028104.
[12] Dunca, A.; Epshteyn, Y., On the Stolz-Adams deconvolution model for the large-eddy simulation of turbulent flows, SIAM J. Math. Anal., 37, 1890-1902 (2006) · Zbl 1128.76029
[13] Winckelmans, G. S.; Jeanmart, H., Assessment of some models for LES without/with explicit filtering, (Geurts; Friedrich; Métais, Direct and Large-eddy Simulation IV (2001), Kluwer), 55-66 · Zbl 1080.76531
[14] Smagorinsky, J. S., General circulation experiments with the primitive equations. I: the basic experiment, Monthly Weather Rev., 91, 99-165 (1963)
[15] Sagaut, P., Numerical simulations of separated flows with subgrid models, Rech. Aéro., 1, 51-63 (1996)
[16] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 1760-1765 (1991) · Zbl 0825.76334
[17] Lilly, D. K., A proposed modification of the Germano-subgrid-scale closure method, Phys. Fluids A, 4, 633-635 (1992)
[18] Boyd, J. P., Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral and spectral element methods: preserving boundary conditions and interpretation of the filter as a diffusion, J. Comput. Phys., 143, 283-288 (1998) · Zbl 0920.65046
[19] Leriche, E.; Gavrilakis, S., Direct numerical simulation of the flow in the lid-driven cubical cavity, Phys. Fluids, 12, 1363-1376 (2000) · Zbl 1149.76452
[20] Bouffanais, R.; Deville, M. O.; Fischer, P. F.; Leriche, E.; Weill, D., Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method, J. Sci. Comput., 27, 151-162 (2006) · Zbl 1099.76026
[21] R. Bouffanais, M.O. Deville, E. Leriche, Large-eddy simulation of the flow in a lid-driven cubical cavity, Phys. Fluids (2007), in press.; R. Bouffanais, M.O. Deville, E. Leriche, Large-eddy simulation of the flow in a lid-driven cubical cavity, Phys. Fluids (2007), in press. · Zbl 1146.76333
[22] Zang, Y.; Street, R. L.; Koseff, J. R., A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows, Phys. Fluids A, 5, 3186-3193 (1993) · Zbl 0925.76242
[23] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-order methods for incompressible fluid flow (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1007.76001
[24] Y. Maday, A.T. Patera, E.M. Rønquist, The \(\mathbb{P}_N \times \mathbb{P}_{N - 2} \); Y. Maday, A.T. Patera, E.M. Rønquist, The \(\mathbb{P}_N \times \mathbb{P}_{N - 2} \)
[25] Maday, Y.; Patera, A. T., Spectral element methods for the incompressible Navier-Stokes equations, (Noor, A. K.; Oden, J. T., State-of-the-Art Survey on Computational Mechanics (1989), ASME: ASME New York), 71-142
[26] Perot, J. B., An analysis of the fractional step method, J. Comput. Phys., 108, 51-58 (1993) · Zbl 0778.76064
[27] Couzy, W.; Deville, M. O., A fast Schur complement method for the spectral element discretization of the incompressible Navier-Stokes equations, J. Comput. Phys., 116, 135-142 (1995) · Zbl 0832.76068
[28] Sagaut, P., Large Eddy Simulation for Incompressible Flows: An Introduction (2005), Springer: Springer Berlin
[29] Speziale, C. G., Galilean invariance of subgrid scale stress models in large-eddy simulations of turbulence, J. Fluid Mech., 156, 55-62 (1985) · Zbl 0586.76099
[30] Bardina, J.; Ferziger, J. H.; Reynolds, W. C., Improved subgrid scale models for large eddy simulation, AIAA J., 80-1357 (1980)
[31] Sagaut, P.; Comte, P.; Ducros, F., Filtered subgrid scale models, Phys. Fluids, 12, 233-236 (2000) · Zbl 1149.76526
[32] Stolz, S.; Adams, N. A.; Kleiser, L., An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows, Phys. Fluids, 13, 997-1015 (2001) · Zbl 1184.76530
[33] Blackburn, H. M.; Schmidt, S., Spectral element filtering techniques for large eddy simulation with dynamic estimation, J. Comput. Phys., 186, 610-629 (2003) · Zbl 1047.76520
[34] Moeng, C. H.; Wyngaard, J. C., Spectral analysis of large-eddy simulations of the convective boundary layer, J. Atmosph. Sci., 45, 3573-3587 (1988)
[35] Mathieu, J.; Scott, J., An Introduction to Turbulent Flow (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0955.76001
[36] Pope, S. B., Turbulent Flows (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0802.76033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.