×

Multistationarity in structured reaction networks. (English) Zbl 1415.92083

Summary: Many dynamical systems arising in biology and other areas exhibit multistationarity (two or more positive steady states with the same conserved quantities). Although deciding multistationarity for a polynomial dynamical system is an effective question in real algebraic geometry, it is in general difficult to determine whether a given network can give rise to a multistationary system, and if so, to identify witnesses to multistationarity, that is, specific parameter values for which the system exhibits multiple steady states. Here we investigate both problems. First, we build on work of C. Conradi et al. [“Identifying parameter regions for multistationarity”, PLoS Comput. Biol. 13(10), e1005751 (2017; doi:10\.1371/journal.pcbi.1005751)], who showed that for certain reaction networks whose steady states admit a positive parametrization, multistationarity is characterized by whether a certain “critical function” changes sign. Here, we allow for more general parametrizations, which make it much easier to determine the existence of a sign change. This is particularly simple when the steady-state equations are linearly equivalent to binomials; we give necessary conditions for this to happen, which hold for many networks studied in the literature. We also give a sufficient condition for multistationarity of networks whose steady-state equations can be replaced by equivalent triangular-form equations. Finally, we present methods for finding witnesses to multistationarity, which we show work well for certain structured reaction networks, including those common to biological signaling pathways. Our work relies on results from degree theory, on the existence of explicit rational parametrizations of the steady states, and on the specialization of Gröbner bases.

MSC:

92C42 Systems biology, networks
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

Software:

MESSI; Maple; Kronecker
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Banaji M, Pantea C (2016) Some results on injectivity and multistationarity in chemical reaction networks. SIAM J Appl Dyn Syst 15(2):807-869 · Zbl 1342.80011 · doi:10.1137/15M1034441
[2] Becker E, Marinari MG, Mora T, Traverso C (1994) The shape of the Shape Lemma. In: Proceedings of ISSAC ’94. ACM, New York, pp 129-133 · Zbl 0925.13006
[3] Bihan F, Dickenstein A, Giaroli M (2018) Lower bounds for positive roots and regions of multistationarity in chemical reaction networks. Preprint arXiv:1807.05157 · Zbl 1409.92103
[4] Conradi C, Feliu E, Mincheva M, Wiuf C (2017) Identifying parameter regions for multistationarity. PLoS Comput Biol 13(10):e1005751 · doi:10.1371/journal.pcbi.1005751
[5] Conradi C, Shiu A (2018) Dynamics of post-translational modification systems: recent progress and future challenges. Biophys J 114(3):507-515 · doi:10.1016/j.bpj.2017.11.3787
[6] Cox D, Little J, O’Shea D (2005) Using algebraic geometry, vol 185. Springer, Berlin · Zbl 1079.13017
[7] Cox D, Little J, O’Shea D (2007) Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. Springer, Berlin · Zbl 1118.13001 · doi:10.1007/978-0-387-35651-8
[8] Craciun G, Feinberg M (2005) Multiple equilibria in complex chemical reaction networks. I. The injectivity property. SIAM J Appl Math 65(5):1526-1546 · Zbl 1094.80005 · doi:10.1137/S0036139904440278
[9] Craciun G, Feinberg M (2010) Multiple equilibria in complex chemical reaction networks: semiopen mass action systems. SIAM J Appl Math 70(6):1859-1877 · Zbl 1255.80020 · doi:10.1137/090756387
[10] Craciun G, Helton JW, Williams RJ (2008) Homotopy methods for counting reaction network equilibria. Math Biosci 216(2):140-149 · Zbl 1153.92015 · doi:10.1016/j.mbs.2008.09.001
[11] Dickenstein A (2016) Biochemical reaction networks: An invitation for algebraic geometers. In: Mathematical Congress of the Americas, vol 656. American Mathematical Soc, pp 65-83 · Zbl 1346.13063
[12] Enciso G (2014) Fixed points and convergence in monotone systems under positive or negative feedback. Int J Control 87(2):301-311 · Zbl 1317.93134 · doi:10.1080/00207179.2013.830336
[13] Feliu E (2014) Injectivity, multiple zeros and multistationarity in reaction networks. Proc R Soc A 471(2173):20140530 · Zbl 1371.92147
[14] Feliu E, Wiuf C (2012) Enzyme-sharing as a cause of multi-stationarity in signalling systems. J R Soc Interface 9(71):1224-1232 · doi:10.1098/rsif.2011.0664
[15] Feliu E, Wiuf C (2013) Simplifying biochemical models with intermediate species. J R Soc Interface 10:20130484 · doi:10.1098/rsif.2013.0484
[16] Feliu E, Wiuf C (2013) Variable elimination in post-translational modification reaction networks with mass-action kinetics. J Math Biol 66(1-2):281-310 · Zbl 1256.92019 · doi:10.1007/s00285-012-0510-4
[17] Félix B, Shiu A, Woodstock Z (2016) Analyzing multistationarity in chemical reaction networks using the determinant optimization method. Appl Math Comput 287-288:60-73 · Zbl 1410.92179
[18] Gelfand I, Kapranov M, Zelevinsky A (1994) Discriminants, resultants and multidimensional determinants. Birkhäuser, Boston · Zbl 0827.14036 · doi:10.1007/978-0-8176-4771-1
[19] Giaroli M, Bihan F, Dickenstein A (2018) Regions of multistationarity in cascades of Goldbeter-Koshland loops. Preprint arXiv:1807.08400 · Zbl 1409.92103
[20] Giusti M, Heintz J, Morais JE, Morgenstern J, Pardo LM (1998) Straight-line programs in geometric elimination theory. J Pure Appl Algebra 124(1):101-146 · Zbl 0944.12004 · doi:10.1016/S0022-4049(96)00099-0
[21] Giusti M, Lecerf G, Salvy B (2001) A Gröbner free alternative for polynomial system solving. J Complex 17:154-211 · Zbl 1003.12005 · doi:10.1006/jcom.2000.0571
[22] Gnacadja G (2011) Reachability, persistence, and constructive chemical reaction networks (part iii): a mathematical formalism for binary enzymatic networks and application to persistence. J Math Chem 49(10):2158-2176 · Zbl 1303.92150 · doi:10.1007/s10910-011-9895-3
[23] Grimbs S, Arnold A, Koseska A, Kurths J, Selbig J, Nikoloski Z (2011) Spatiotemporal dynamics of the Calvin cycle: multistationarity and symmetry breaking instabilities. BioSystems 103:212-223 · doi:10.1016/j.biosystems.2010.10.015
[24] Holstein K, Flockerzi D, Conradi C (2013) Multistationarity in sequential distributed multisite phosphorylation networks. Bull Math Biol 75(11):2028-2058 · Zbl 1283.92030 · doi:10.1007/s11538-013-9878-6
[25] Johnston MD (2014) Translated chemical reaction networks. Bull Math Biol 76(6):1081-1116 · Zbl 1297.92096 · doi:10.1007/s11538-014-9947-5
[26] Johnston M, Müller S, Pantea C (2018) A deficiency-based approach to parametrizing positive equilibria of biochemical reaction systems. Preprint arXiv:1805.09295 · Zbl 1415.92086
[27] Joshi B (2013) Complete characterization by multistationarity of fully open networks with one non-flow reaction. Appl Math Comput 219:6931-6945 · Zbl 1326.92077
[28] Joshi B, Shiu A (2015) A survey of methods for deciding whether a reaction network is multistationary. Math Model Nat Phenom 10(5):47-67 · Zbl 1371.92148 · doi:10.1051/mmnp/201510504
[29] Joshi B, Shiu A (2017) Which small reaction networks are multistationary? SIAM J Appl Dyn Syst 16(2):802-833 · Zbl 1373.37059 · doi:10.1137/16M1069705
[30] Kapur D, Sun Y, Wang D (2010) A new algorithm for computing comprehensive Gröbner systems. In: ISSAC’10 Proceedings of the 35th international symposium on symbolic and algebraic computation, pp 29-36 · Zbl 1321.68533
[31] Mirzaev I, Gunawardena J (2013) Laplacian dynamics on general graphs. Bull Math Biol 75(11):2118-49 · Zbl 1310.92023 · doi:10.1007/s11538-013-9884-8
[32] Müller S, Feliu E, Regensburger G, Conradi C, Shiu A, Dickenstein A (2016) Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found Comput Math 16(1):69-97 · Zbl 1382.92272 · doi:10.1007/s10208-014-9239-3
[33] Müller S, Hofbauer J, Regensburger G (2018) On the bijectivity of families of exponential/generalized polynomial maps. Preprint arXiv:1804.01851 · Zbl 1419.26001
[34] Maple 17 (2013) Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario
[35] Millán MP, Dickenstein A (2018) The structure of MESSI biological systems. SIAM J Appl Dyn Syst 17(2):1650-1682 · Zbl 1395.92071 · doi:10.1137/17M1113722
[36] Millán MP, Dickenstein A, Shiu A, Conradi C (2012) Chemical reaction systems with toric steady states. Bull Math Biol 74(5):1027-1065 · Zbl 1251.92016 · doi:10.1007/s11538-011-9685-x
[37] Rubinstein BY, Mattingly HH, Berezhkovskii AM, Shvartsman SY (2016) Long-term dynamics of multisite phosphorylation. Mol Biol Cell 27(14):2331-2340 · doi:10.1091/mbc.E16-03-0137
[38] Sadeghimanesh A, Feliu E (2018) The multistationarity structure of networks with intermediates and a binomial core network. Preprint arXiv:1808.07548 · Zbl 1417.92058
[39] Shinar G, Feinberg M (2012) Concordant chemical reaction networks. Math Biosci 240(2):92-113 · Zbl 1316.92100 · doi:10.1016/j.mbs.2012.05.004
[40] Shiu A (2008) The smallest multistationary mass-preserving chemical reaction network. Lect Notes Comput Sci 5147:172-184 · Zbl 1171.92322 · doi:10.1007/978-3-540-85101-1_13
[41] Shiu A, de Wolff T (2018) Nondegenerate multistationarity in small reaction networks. Preprint arXiv:1802.00306 · Zbl 1415.92088
[42] Shiu A, Sturmfels B (2010) Siphons in chemical reaction networks. Bull Math Biol 72(6):1448-1463 · Zbl 1198.92020 · doi:10.1007/s11538-010-9502-y
[43] Thomson M, Gunawardena J (2009) The rational parameterisation theorem for multisite post-translational modification systems. J Theor Biol 261(4):626-636 · Zbl 1403.92085 · doi:10.1016/j.jtbi.2009.09.003
[44] Tutte WT (1948) The dissection of equilateral triangles into equilateral triangles. Math Proc Camb 44(4):463-482 · Zbl 0030.40903 · doi:10.1017/S030500410002449X
[45] Wang L, Sontag ED (2008) On the number of steady states in a multiple futile cycle. J Math Biol 57(1):29-52 · Zbl 1141.92022 · doi:10.1007/s00285-007-0145-z
[46] Wiuf C, Feliu E (2013) Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species. SIAM J Appl Dyn Syst 12:1685-1721 · Zbl 1278.92012 · doi:10.1137/120873388
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.