zbMATH — the first resource for mathematics

Trimming and winsorization: A review. (English) Zbl 0284.62023

62G35 Nonparametric robustness
Full Text: DOI
[1] Andrews, D.F., P.J. Bickel, F.R. Hample, P.J. Huber, W.H. Rogers, and J.W. Tukey (1972).Robust estimates of location: Survey and Advances. Princeton Univ. Press. · Zbl 0254.62001
[2] Bickel, P.J. (1965). On some robust estimate of location.Ann. Math. Statist., 36, 847–858. · Zbl 0192.25802 · doi:10.1214/aoms/1177700058
[3] Chen, E.H. (1969). Winsorization and trimming techniques applied to linear regression analysis. Ph.D. dissertation, Univ. of Calif., Los Angeles.
[4] Chen, E.H. and W.J. Dixon (1972). Mean and MSE for the Winsorized mean corresponding to the shortest 95 % confidence interval. Unpublished manuscript.
[5] Chen, E.H. and W.J. Dixon (1972). Estimates of parameters of a censored regression sample.J. Amer. Statist. Assoc., 67, 664–671. · Zbl 0256.62061 · doi:10.2307/2284463
[6] Dixon, W.J. (1957). Estimates of the mean and standard deviation of a normal population.Ann. Math. Statist., 28, 806–809. · Zbl 0082.13605 · doi:10.1214/aoms/1177706898
[7] Dixon, W.J. (1960). Simplified estimation from censored normal samples.Ann. Math. Statist., 31, 385–391. · Zbl 0093.15802 · doi:10.1214/aoms/1177705900
[8] Dixon, W.J. and J.W. Tukey (1969). Approximate behavior of the distribution of Winsorized t. (Trimming/Winsorization 2)Technometrics, 10, 83–98. · doi:10.2307/1266226
[9] Dixon, W.J. and F.J. Massey, Jr. (1969).Introduction to statistical analysis, 3rd ed., New York: McGraw-Hill.
[10] Fridshal, D. and H.O. Posten (1966). Bibliography on statistical robustness and related topics. Research report No. 16, Dept. of Statistics, Univ. of Connecticut, Storrs, Conn.
[11] Grovindarajulu, J. and R.T. Leslie (1972). Annotated bibliography on robustness studies. Vital and health statistics, data evaluation and method research, series 2, No. 51.
[12] Harris, T.E. and J.W. Tukey (1949). Development of large sample measures of location and scale which are relatively insensitive to contamination. Memorandum Report 31, Statistical research group, Princeton Univ.
[13] Hatch, L.O. and H.O. Posten (1966). Robustness of Student-procedure: A survey. Research report No. 24, Dept. of Statistics, Univ. of Connecticut.
[14] Huber, P.J. (1972). Robust statistics: A review.Ann. Math. Statist., 43, 1041–1067. · Zbl 0254.62023 · doi:10.1214/aoms/1177692459
[15] Hyrenius, H. and I. Adolfson, et al. (1964). Selected bibliography on nonnormality. Publication No. 12, Dept. of Statistics, Univ. of Gothenburg, Sweden.
[16] Jaeckel, L.A. (1971). Some flexible estimates of location.Ann. Math. Statist., 42, 1540–1552. · Zbl 0232.62008 · doi:10.1214/aoms/1177693152
[17] Johnson, N.L. (1949). Systems of frequency curves generated by methods of translation.Biometrika, 36, 149–176. · Zbl 0033.07204
[18] McLaughlin, D.H. and J.W. Tukey (1961). The variance of symmetrically trimmed samples from normal populations, and its estimation from such trimmed samples. (Trimming/Winsorization I), Princeton Univ. Technical Report No. 42.
[19] Stigler, S.M. (1972). The asymptotic distribution of the trimmed mean. Technical report No. 294, Dept. of Statistics, The Univ. of Wisconsin, Madison, Wisconsin. · Zbl 0261.62016
[20] Tukey, J.W. (1962). The future of data analysis.Ann. Math. Statist., 33, 1–67. · Zbl 0107.36401 · doi:10.1214/aoms/1177704711
[21] Tukey, J.W. and D.H. McLaughlin (1963). Less vulnerable confidence and significance procedures for location based on a single sample: Trimming/Winsorization I.Sankhyā, A, 25, 331–352. · Zbl 0116.10904
[22] Walsh, J.E. (1949). Some significance tests for the median which are valid under very general conditions.Ann. Math. Statist., 20, 64–81. · Zbl 0033.07602 · doi:10.1214/aoms/1177730091
[23] Wang, Y.Y. (1971). Probabilities of type I errors of the Welch tests for the Behrens-Fisher problem.J. Amer. Statist. Assoc., 66, 605–608. · doi:10.2307/2283538
[24] Welch, B.L. (1936). Specification of rules for rejecting two variable a product, with particular reference to an electric lamp problem.J. Roy. Statist. Soc., Supp. 3, 29–48. · JFM 63.1099.03
[25] Welch, B.L. (1938). The significance of the difference between two means when the population variances are unequal.Biometrika, 29, 350–62. · Zbl 0018.22602
[26] Welch, B.L. (1949). In Appendix of Tables for use in comparisons whose accuracy involves two variances separately estimated by A.A. Aspin.Biometrika, 36, 290–96.
[27] Wonnacott, T.H. (1963). A Monte-Carlo method of obtaining the power of certain tests of location. Ph.D.dissertation, Princeton Univ.
[28] Yale, Coralee (1970). An application of Winsorization to linear regression analysis. Masters thesis, Univ. of. Calif., Los Angeles.
[29] Yuen, K.K. (1971). A note on Winsorized t.J. Roy. Statist. Soc., C. 20, 297–304.
[30] Yuen, K.K. (1972). The two-sample trimmed t. Ph.D. dissertation, Univ. of Calif., Los Angeles.
[31] Yuen, K.K. (1972). Power comparisons of single-sample Winsorized, trimmed, and Student’s t. Submitted for publication. · Zbl 0391.62017
[32] Yuen, K.K. and W.J. Dixon (1973). The approximate behavior and performance of the two-sample trimmed t.Biometrika, 60, 2, 369–374. · Zbl 0263.62014
[33] Yuen, K.K. (1974). The two-sample trimmed t for unequal population variances.Biometrika, 61, 165–170. · Zbl 0277.62009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.