zbMATH — the first resource for mathematics

An anisotropic continuum model for traffic assignment in mixed transportation networks. (English) Zbl 07165698
Summary: This work deals with a two-dimensional continuum model for the problem of congested traffic assignment in an urban transportation system consisting of a set of freeways superimposed over a dense street network. The formulation leads to a system of non-linear differential equations whose unknowns are given by the travel times from arbitrary points of the network to the corresponding destinations. The governing equations are appropriately solved by means of the Finite Element Method. Then, traffic flow on every link of the network can be obtained. Numerical examples are given in order to demonstrate the efficiency of the developed model.
90-XX Operations research, mathematical programming
74-XX Mechanics of deformable solids
Full Text: DOI
[1] Wardrop, J. G., Some Theoretical Aspects of Road Traffic Research, 325-378 (1952), Institution of Civil Engineers
[2] Beckmann, M. J.; Mc Guire, C.; Weinstein, C., Studies in Economics of Transportation (1956), Yale University Press: Yale University Press New Haven, Connecticut
[3] Sheffi, Y., Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods (1984), Prentice-Hall, Inc.: Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632
[4] Poorzahedy, H.; Rouhani, O. M., Hybrid meta-heuristic algorithms for solving network design problem, Eur. J. Oper. Res., 182, 578-596 (2007) · Zbl 1121.90024
[5] Dominguez, P. N.; Vidal, M. C.; Cortínez, V. H., Optimal design of urban transportation networks considering environmental aspects (in Spanish), Mecánica Computacional (Asociación Argentina de Mecánica Computacional), XXVIII, 2599-2624 (2009)
[6] Wang, G. M.; Gao, Z. Y.; Xu, M., An MPEC formulation and its cutting constraints algorithm for continuous network design problem with multi-user classes, Appl. Math. Model., 36, 1846-1858 (2014) · Zbl 1427.90069
[7] Chiou, S. W., A non-smooth model for signalized road network design problems, Appl. Math. Model., 32, 1179-1190 (2008) · Zbl 1172.90335
[8] Bar-Gera, H.; Boyce, D., Origin-based algorithms for combined travel forecasting models, Transp. Res. Part B, 37, 405-422 (2003)
[9] Kang, D. H., Multi-commodity flow estimation with partial counts on selected links (2005), Texas A&M University: Texas A&M University USA, Ph.D. thesis
[10] Xu, M.; Chen, A.; Qu, Y.; Gao, Z., A semismooth newton method for traffic equilibrium problem with a general nonadditive route cost, Appl. Math. Model., 35, 3048-3062 (2011) · Zbl 1219.90040
[11] Sasaki, T.; Iida, Y.; Yang, H., User equilibrium traffic assignment by continuum approximation of network flow, Proceedings of the 11th International Symposium of Transportation and Traffic Theory, 233-252 (1990), Yokohama, Japan
[12] Ho, H. W.; Wong, S. C., Two-dimensional continuum modeling approach to transportation problems, J. Transp. Syst. Eng. Inf. Technol., 6, 53-72 (2006)
[13] Beckmann, M., A continuous model of transportation, Econometrica, 20, 643-660 (1952) · Zbl 0048.13001
[14] Lam, T. N.; Newell, G. F., Flow dependent traffic assignment on a circular city, Transp. Sci., 318-361 (1967)
[15] D’Este, G., Trip assignment to radial major roads, Transp. Res. Part B, 19, 227-237 (1987)
[16] Wong, S. C., An alternative formulation of D’Este’s trip assignment model, Transp. Res. Part B, 28, 187-196 (1994)
[17] Dafermos, S., Continuum modeling of transportation network, Transp. Res. Part B, 14, 295-301 (1980)
[18] Vaughan, R. J.; Doyle, E., Rectangular routing in Smeed’s city, Transp. Res. Part B, 13, 181-182 (1979)
[19] Taguchi, A.; Iri, M., Continnum approximation to dense networks and its application to the analysis of urban road networks, Math. Program. Study, 20, 178-217 (1982) · Zbl 0495.90037
[20] Wong, S. C.; Lee, C. K.; Tong, C. O., Finite element solution for the continuum traffic equilibrium problem, Int. J. Numer. Methods Eng., 43, 1253-1273 (1998) · Zbl 0927.90013
[21] Ho, H. W.; Wong, S. C.; Loo, B. P.Y., A continuous traffic equilibrium model with multiple user classes, J. East. Asia Soc. Transp. Stud., 5, 2831-2845 (2003)
[22] Wong, K.; Wong, S. C.; Wu, J.; Yang, H.; Lam, W., A combined distribution hierarchical mode choice and assignment network model with multiple user and mode classes, (D.-H., Lee, Urban and Regional Transportation Modeling: Essays in Honor of David Boyce (2003), Edward Elgar Publishing Inc.: Edward Elgar Publishing Inc. Northampton, U.S.A.)
[23] Ho, H. W.; Wong, S. C.; Loo, B. P.Y., Combined distribution and assignment model for a continuum traffic equilibrium problem with multiple user classes, Transp. Res. Part B, 40, 633-650 (2006)
[24] Ho, H. W.; Wong, S. C.; Yang, H.; Loo, B. P.Y., Cordon-based congestion pricing in a continuum traffic equilibrium system, Transp. Res. Part A, 39, 813-834 (2005)
[25] Ho, H. W.; Wong, S. C.; Hau, T. D., A multi-class congestion-pricing problem in a continuum transportation system, J. East. Asia Soc. Transp. Stud., 7, 238-253 (2007)
[26] Ho, H. W.; Wong, S. C., Housing allocation problem in a continuum transportation system, Transportmetrica, 3, 21-39 (2007)
[27] Xu, S.; He, Y., Model and algorithm for initial route planning, Workshop on Power Electronics and Intelligent Transportation System (2008)
[28] Wong, W.; Wong, S. C., Biased standard error estimations in transport model calibration due to heteroscedasticity arising from the variability of linear data projection, Transp. Res. Part B, 88, 72-92 (2016)
[29] Wong, W.; Wong, S. C., Network topological effects on the macroscopic bureau of public roads function, Transportmetrica A, 12, 3, 272-296 (2016)
[30] Wong, W.; Wong, S. C., Systematic bias in transport model calibration arising from the variability of linear data projection, Transp. Res. Part B, 75, 1-18 (2015)
[31] Geroliminis, N.; Daganzo, C. F., Existence on urban-scale macroscopic fundamental diagrams: some experimental findings, Transp. Res. Part B, 42, 759-770 (2008)
[32] Aboudolas, K.; Geroliminis, N., Perimeter and boundary flow control in multi-reservoir heterogeneous networks, Transp. Res. Part B, 55, 265-281 (2013)
[33] Yang, H.; Yagar, S.; Iida, Y., Traffic assignment in a congested discrete/continuous transportation system, Transp. Res. Part B, 28, 161-174 (1994)
[34] Robusté, F.; Oñate, E.; Ramos, J. M., A hybrid discrete-continuum model for traffic assignment by means of genetic algorithm (in spanish), IX Congreso Panamericano de Ingeniería de Tránsito y Transporte (1996), La Habana, Cuba
[35] Wong, S. C.; Du, Y. C.; Ho, H. W.; Sun, L. J., A simultaneous optimization formulation discrete/continuous transportation system, Transp. Res. Record 1857, 11-20 (2003)
[36] Du, Y. C.; Wong, S. C.; Sun, L. J., A multi-commodity discrete/continuous model for a traffic equilibrium system, Transportmetrica A: Transp. Sci., 12, 249-271 (2016)
[37] Gupta, A. K.; Katiyar, V. K., A new multiclass continuum model for traffic flow, Transportmetrica, 3, 73-85 (2007)
[38] Gupta, A. K.; Katiyar, V. K., A new anisotropic continuum model for traffic flow, Physica A, 368, 551-559 (2006)
[39] Saumtally, T.; Lebacque, J. P.; Salem, H. H., Static traffic assignment with side constraints in a dense orthotropic network, Procedia - Social Behav. Sci., 20, 465-474 (2011)
[40] Cortínez, V. H.; Dominguez, P. N., An anisotropic diffusion model for the study of the urban traffic (in spanish), Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería., 29, 1, 1-11 (2013)
[41] Attipou, K.; Nezamabadi, S.; Daya, E. M.; Zahrouni, H., A multiscale approach for the vibration analysis of heterogeneous materials: application to passive damping, J. Sound Vibr., 332, 725-739 (2013)
[42] Gonella, S.; Ruzzene, M., Homogenization of vibrating periodic lattice structures, Appl. Math. Model., 32, 459-482 (2008) · Zbl 1388.74085
[43] Noor, A. K.; Russell, W. C., Anisotropic continuum models for beamlike lattice trusses, Comput. Methods Appl. Mech. Eng., 57, 257-277 (1986) · Zbl 0591.73057
[44] Patriksson, M., The Traffic Assignment Problem: Models and Methods (2015), Dover Publications
[45] Ferris, M. C.; Meeraus, A.; Rutherford, T. F., Computing Wardropian equilibria in a complementarity framework, Optim. Methods Softw., 10, 669-685 (1999) · Zbl 0938.90006
[46] Washizu, K., Variational Methods in Elasticity and Plasticity (1975), Pergamon Press · Zbl 0164.26001
[49] Dominguez, P. N., A new continuum model of traffic assignment for optimal design of urban transportation networks (in spanish) (2013), Universidad Nacional del Sur: Universidad Nacional del Sur Bahía Blanca, Argentina, Ph.D. thesis
[50] Frank, M.; Wolfe, P., An algorithm for quadratic programming, Nav. Res. Logist. Q., 3:95-110 (1956)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.