zbMATH — the first resource for mathematics

A variant of Mathias forcing that preserves \(\mathsf{ACA}_0\). (English) Zbl 1269.03020
This paper formulates and applies \(F_\sigma\)-Mathias forcing, an adaptation of set-theoretic Mathias forcing specially devised to preserve properties of models of second-order arithmetic. For example, the author proves that if \(\mathcal N\) is a model of ACA\(_0\) and \(G\) is generic for \(F_\sigma\)-Mathias forcing, then \(\mathcal N [G]\) is also a model of ACA\(_0\). This statement also holds with ACA\(_0\) replaced by WKL\(_0\) plus induction for \(\Sigma^0_2\) formulas. The final section demonstrates the use of this forcing machinery in obtaining conservation and cone-avoidance theorems.
The article supplies a conceptual bridge from the set-theoretic treatment of Mathias forcing of J. E. Baumgartner [Lond. Math. Soc. Lect. Note Ser. 87, 1–59 (1983; Zbl 0524.03040)] and A. Blass [Ann. Pure Appl. Logic 109, No. 1–2, 77–88 (2001; Zbl 0980.03055)] to the computability-theoretic results of P. A. Cholak et al. [J. Symb. Log. 66, No. 1, 1–55 (2001; Zbl 0977.03033); corrigendum ibid. 74, No. 4, 1438–1439 (2009; Zbl 1182.03107)] and D. D. Dzhafarov and C. G. Jockusch jun. [J. Symb. Log. 74, No. 2, 557–578 (2009; Zbl 1166.03021)].

03B30 Foundations of classical theories (including reverse mathematics)
03E40 Other aspects of forcing and Boolean-valued models
03F35 Second- and higher-order arithmetic and fragments
Full Text: DOI arXiv
[1] Baumgartner, J.E.: Iterated forcing. In: Surveys in Set Theory, London Mathematical Society Lecture Note Series, vol. 87. Cambridge University Press, Cambridge, pp. 1–59 (1983)
[2] Blass A.R.: Needed reals and recursion in generic reals. Ann. Pure Appl. Logic (Dedicated to Petr Vopěnka) 109(1–2), 77–88 (2001) · Zbl 0980.03055 · doi:10.1016/S0168-0072(01)00043-4
[3] Cholak P.A., Jockusch C.G. Jr., Slaman T.A.: On the strength of Ramsey’s theorem for pairs. J. Symb. Logic. 66(1), 1–55 (2001) · Zbl 0977.03033 · doi:10.2307/2694910
[4] Daguenet, M.: Propriété de Baire de \(\beta\) N muni d’une nouvelle topologie et application àla construction d’ultrafiltres. Séminaire Choquet, 14e année (1974/75), Initiation à l’analyse, exp. no. 14. Secrétariat Mathématique, Paris, p. 3 (1975)
[5] Dzhafarov D.D., Jockusch C.G. Jr.: Ramsey’s theorem and cone avoidance. J. Symb. Logic. 74(2), 557–578 (2009) · Zbl 1166.03021 · doi:10.2178/jsl/1243948327
[6] Ellentuck E.: A new proof that analytic sets are Ramsey. J. Symb. Logic 39, 163–165 (1974) · Zbl 0292.02054 · doi:10.2307/2272356
[7] Hirschfeldt D.R., Shore R.A.: Combinatorial principles weaker than Ramsey’s theorem for pairs. J. Symb. Logic 72(1), 171–206 (2007) · Zbl 1118.03055 · doi:10.2178/jsl/1174668391
[8] Kohlenbach, U.: Higher order reverse mathematics. In: Reverse Mathematics 2001, Lecture Notes Logic, vol. 21. Association for Symbolic Logic, La Jolla, CA, pp. 281–295 (2005) · Zbl 1097.03053
[9] Mazur K.: $${F_\(\backslash\)sigma}$$ -ideals and $${\(\backslash\)omega_1\(\backslash\)omega_1\^*}$$ -gaps in the Boolean algebras P(\(\omega\))/I. Fund. Math. 138(2), 103–111 (1991)
[10] Seetapun D., Slaman T.A.: On the strength of Ramsey’s theorem. Notre Dame J. Formal Logic (Special issue: Models of arithmetic) 36(4), 570–582 (1995) · Zbl 0843.03034 · doi:10.1305/ndjfl/1040136917
[11] Simpson S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Logic. Cambridge University Press, Cambridge (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.