×

Energy method for multi-dimensional balance laws with non-local dissipation. (English) Zbl 1197.35050

Summary: We are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions \(n\geqslant 2\), and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially \(L^{1}\)-perturbations.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B45 A priori estimates in context of PDEs
35L65 Hyperbolic conservation laws
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Colombo, R. M.; Guerra, G., Hyperbolic balance laws with a dissipative non-local source, Comm. Pure Appl. Anal., 7, 1077-1090 (2008) · Zbl 1151.35398
[2] Colombo, R. M.; Guerra, G., Hyperbolic balance laws with a non-local source, Comm. Partial Differential Equations, 32, 1917-1939 (2007) · Zbl 1138.35059
[3] Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften, vol. 325 (2005), Springer-Verlag: Springer-Verlag Berlin, xx+626 pp · Zbl 1078.35001
[4] Dedner, A.; Rohde, C., FV-schemes for a scalar model problem of radiation magneto-hydrodynamics, (Herbin, R.; Kröner, D., Finite Volumes for Complex Applications III (2002), Hermes Science Publications), 179-186 · Zbl 1177.76221
[5] Dedner, A.; Rohde, C., Numerical approximation of entropy solutions for hyperbolic integral-differential equations, Numer. Math., 97, 3, 441-471 (2004) · Zbl 1060.65135
[6] Di Francesco, M., Initial value problem and relaxation limits of the Hamer model for radiating gases in several space variables, NoDEA Nonl. Differential Equations Appl., 13, 531-562 (2007) · Zbl 1132.35061
[7] Di Francesco, M.; Fellner, K.; Liu, H., A non-local conservation law with non-linear “radiation” inhomogeneity, J. Hyperbolic Differential Equations, 5, 1, 1-23 (2008) · Zbl 1158.35063
[8] Di Francesco, M.; Lattanzio, C., Optimal \(L^1\) rate of decay to diffusion waves for the Hamer model of radiating gases, Appl. Math. Lett., 19, 1046-1052 (2006) · Zbl 1116.35088
[9] Duan, R.-J.; Ukai, S.; Yang, T., A combination of energy method and spectral analysis for studies on systems for gas motions, Frontiers of Mathematics in China, 4, 2, 253-282 (2009) · Zbl 1180.35103
[10] Duan, R.-J.; Ukai, S.; Yang, T.; Zhao, H.-J., Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications, Comm. Math. Phys., 277, 189-236 (2008) · Zbl 1175.82047
[11] Gao, W.-L.; Zhu, C.-J., Asymptotic decay toward the planar rarefaction waves for a model system of the radiating gas in two dimensions, Math. Models Methods Appl. Sci., 18, 511-541 (2008) · Zbl 1163.35324
[12] Gao, W.-L.; Ruan, L.-Z.; Zhu, C.-J., Decay rates to the planar rarefaction waves for a model system of the radiating gas in \(n\)-dimensions, J. Differential Equations, 244, 2614-2640 (2008) · Zbl 1154.35010
[13] Hamer, K., Nonlinear effects on the propagation of sound waves in a radiating gas, Quart. J. Mech. Appl. Math., 24, 155-168 (1971) · Zbl 0219.76088
[14] Iguchi, T.; Kawashima, S., On space-time decay properties of solutions to hyperbolic-elliptic coupled systems, Hiroshima Math. J., 32, 229-308 (2002) · Zbl 1021.35015
[15] Ito, K., Asymptotic decay toward the planar rarefaction waves of solutions for viscous conservation laws in several space dimensions, Math. Models Methods Appl. Sci., 6, 315-338 (1996) · Zbl 0853.76076
[17] Kawashima, S.; Nikkuni, Y.; Nishibata, S., Large-time behavior of solutions to hyperbolic-elliptic coupled systems, Arch. Rational Mech. Anal., 170, 297-329 (2003) · Zbl 1073.35039
[18] Kawashima, S.; Nishibata, S., A singular limit for hyperbolic-elliptic coupled systems in radiation hydrodynamics, Indiana Univ. Math. J., 50, 567-589 (2001) · Zbl 0997.35005
[19] Kawashima, S.; Nishibata, S., Weak solutions with a shock to a model system of the radiating gas, Sci. Bull. Josai. Univ., 5, 119-130 (1998), special issue · Zbl 0915.76074
[20] Kawashima, S.; Nishibata, S., Cauchy problem for a model system of the radiating gas: Weak solutions with a jump and classical solutions, Math. Models Methods Appl. Sci., 9, 69-91 (1999) · Zbl 0935.35098
[21] Kawashima, S.; Nishibata, S., Shock waves for a model system of the radiating gas, SIAM J. Math. Anal., 30, 95-117 (1999) · Zbl 0924.35082
[22] Kawashima, S.; Tanaka, Y., Stability of rarefaction waves for a model system of a radiating gas, Kyushu J. Math., 58, 211-250 (2004) · Zbl 1068.35106
[23] Kawashima, S.; Nishibata, S.; Nishikawa, M., \(L^p\) energy method for multi-dimensional viscous conservation laws and application to the stability of planar waves, J. Hyperbolic Differential Equations, 1, 581-603 (2004) · Zbl 1067.35019
[24] Kružkov, S., First-order quasi-linear equations with several independent variables, Mat. Sb., 8, 123, 228-255 (1970)
[25] Lattanzio, C.; Marcati, P., Global well-posedness and relaxation limits of a model for radiating gas, J. Differential Equations, 190, 439-465 (2003) · Zbl 1052.35126
[26] Lattanzio, C.; Mascia, C.; Serre, D., Shock waves for radiative hyperbolic-elliptic systems, Indiana Univ. Math. J., 56, 2601-2640 (2007) · Zbl 1132.35062
[27] Laurençot, P., Asymptotic self-similarity for a simplified model for radiating gases, Asymptot. Anal., 42, 251-262 (2005) · Zbl 1070.35065
[28] Lin, C. J.; Coulombel, J. F.; Goudon, T., Shock profiles for non-equilibrium radiating gases, Phys. D, 218, 83-94 (2006) · Zbl 1096.35086
[29] Liu, H.; Tadmor, E., Critical thresholds a convolution model for nonlinear conservation laws, SIAM J. Math. Anal., 33, 930-945 (2001) · Zbl 1002.35085
[30] Mihalas, D.; Weibel-Mihalas, B., Foundations of Radiation Hydrodynamics (1984), Oxford Univ. Press: Oxford Univ. Press New York · Zbl 0651.76005
[31] Nishikawa, M.; Nishibata, S., Convergence rates toward the travelling waves for a model system of the radiating gas, Math. Methods Appl. Sci., 30, 649-663 (2007) · Zbl 1120.35022
[32] Nishibata, S., Asymptotic behavior of solutions to a model system of a radiating gas with discontinuous initial data, Math. Models Methods Appl. Sci., 10, 1209-1231 (2000) · Zbl 1078.76601
[33] Rohde, C.; Yong, W.-A., The nonrelativistic limit in radiation hydrodynamics: I. Weak entropy solutions for a model problem, J. Differential Equations, 234, 91-109 (2007) · Zbl 1108.76086
[34] Rosenau, P., Extending hydrodynamics via the regularization of the Chapman-Enskog expansion, Phys. Rev. A, 40, 3, 7193-7196 (1989)
[35] Schochet, S.; Tadmor, E., The regularized Chapman-Enskog expansion for scalar conservation laws, Arch. Rational Mech. Anal., 119, 95-107 (1992) · Zbl 0793.76005
[36] Serre, D., \(L^1\)-stability of constants in a model for radiating gases, Comm. Math. Sci., 1, 197-205 (2003) · Zbl 1080.76047
[37] Treiber, M.; Hennecke, A.; Helbing, D., Derivation, properties, and simulation of a gas-kinetic-based, non-local traffical model, Phys. Rev. E, 59, 239-253 (1999)
[38] Ukai, S., Time-periodic solutions of the Boltzmann equation, Discrete Contin. Dyn. Syst., 14, 579-596 (2006) · Zbl 1115.35108
[39] Ukai, S.; Yang, T., The Boltzmann equation in the space \(L^2 \cap L^\infty_\beta \): Global and time-periodic solutions, Anal. Appl. (Singap.), 4, 263-310 (2006) · Zbl 1096.35012
[40] Vincenti, W. G.; Kruger, C. H., Introduction to Physical Gas Dynamics (1965), Wiley: Wiley New York
[41] Wang, W. K.; Wang, W. J., The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions, Nonlinear Anal. TMA, 71, 1180-1195 (2009) · Zbl 1178.35104
[42] Xin, Z. P., Asymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensions, Trans. Amer. Math. Soc., 319, 805-820 (1990) · Zbl 0718.35062
[43] Yang, T.; Zhao, H. J., BV estimates on Lax-Friedrichs’ scheme for a model of radiating gas, Appl. Anal., 83, 533-539 (2004) · Zbl 1058.65094
[44] Zel’dovich, Y. B.; Rajzer, C. H., Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (1966), Academic Press
[45] Zumbrun, K.; Serre, D., Viscous and inviscid stability of multi-dimensional planar shock fronts, Indiana Univ. Math. J., 48, 937-992 (1999) · Zbl 0944.76027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.