×

Nonparametric Bayes models of fiber curves connecting brain regions. (English) Zbl 1428.62485

Summary: In studying structural inter-connections in the human brain, it is common to first estimate fiber bundles connecting different regions relying on diffusion MRI. These fiber bundles act as highways for neural activity. Current statistical methods reduce the rich information into an adjacency matrix, with the elements containing a count of fibers or a mean diffusion feature along the fibers. The goal of this article is to avoid discarding the rich geometric information of fibers, developing flexible models for characterizing the population distribution of fibers between brain regions of interest within and across different individuals. We start by decomposing each fiber into a rotation matrix, shape and translation from a global reference curve. These components are viewed as data lying on a product space composed of different Euclidean spaces and manifolds. To nonparametrically model the distribution within and across individuals, we rely on a hierarchical mixture of product kernels specific to the component spaces. Taking a Bayesian approach to inference, we develop efficient methods for posterior sampling. The approach automatically produces clusters of fibers within and across individuals. Applying the method to Human Connectome Project data, we find interesting relationships between brain fiber geometry and reading ability. for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

fda (R); Dipy
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Bachman, A. H.; Lee, S. H.; Sidtis, J. J.; Ardekani, B. A., “Corpus Callosum Shape and Size Changes in Early Alzheimer’s Disease: A Longitudinal MRI Study Using the OASIS Brain Database,”, Journal of Alzheimer’s Disease, 39, 71-78 (2014) · doi:10.3233/JAD-131526
[2] Banerjee, A.; Murray, J.; Dunson, D. B., “Bayesian Learning of Joint Distributions of Objects,”, AISTATS, JMLR Workshop and Conference Proceedings, 31, 1-9 (2013)
[3] Bhattacharya, A.; Dunson, D., “Nonparametric Bayes Regression and Classification Through Mixtures of Product Kernels,”, Biometrika, 97, 851-865 (2010) · Zbl 1204.62053
[4] Bhattacharya, A.; Dunson, D., “Nonparametric Bayesian Density Estimation on Manifolds With Applications to Planar Shapes,”, Biometrika, 97, 851-865 (2010) · Zbl 1204.62053
[5] Bhattacharya, A.; Dunson, D., “Nonparametric Bayes Classification and Hypothesis Testing on Manifolds,”, Journal of Multivariate Analysis, 111, 1-19 (2012) · Zbl 1281.62033
[6] Bigelow, J. L.; Dunson, D. B., “Bayesian Semiparametric Joint Models for Functional Predictors,”, Journal of the American Statistical Association, 104, 26-36 (2009) · Zbl 1388.62181 · doi:10.1198/jasa.2009.0001
[7] Bingham, M. A.; Nordman, D. J.; Vardeman, S. B., “Modeling and Inference for Measured Crystal Orientations and a Tractable Class of Symmetric Distributions for Rotations in Three Dimensions,”, Journal of the American Statistical Association, 104, 1385-1397 (2009) · Zbl 1205.62215 · doi:10.1198/jasa.2009.ap08741
[8] Cachia, A.; Borst, G.; Vidal, J.; Fischer, C.; Pineau, A.; Mangin, J.-F.; Houdé, O., “The Shape of the ACC Contributes to Cognitive Control Efficiency in Preschoolers,”, Journal of Cognitive Neuroscience, 26, 96-106 (2014) · doi:10.1162/jocn_a_00459
[9] Canale, A.; Dunson, D. B., “Bayesian Kernel Mixtures for Counts,”, Journal of the American Statistical Association, 106, 1528-1539 (2011) · Zbl 1233.62041 · doi:10.1198/jasa.2011.tm10552
[10] Cheng, H.; Wang, Y.; Sheng, J.; Kronenberger, W. G.; Mathews, V. P.; Hummer, T. A.; Saykin, A. J., “Characteristics and Variability of Structural Networks Derived From Diffusion Tensor Imaging,”, Neuroimage, 61, 1153-1164 (2012) · doi:10.1016/j.neuroimage.2012.03.036
[11] Cornea, E.; Zhu, H.; Kim, P.; Ibrahim, J. G., “Regression Models on Riemannian Symmetric Spaces,”, Journal of the Royal Statistical Society, Series B, 79, 463-482 (2017) · Zbl 1414.62177 · doi:10.1111/rssb.12169
[12] de Reus, M. A.; van den Heuvel, M. P., “The Parcellation-Based Connectome: Limitations and Extensions,”, Neuroimage, 80, 397-404 (2013) · doi:10.1016/j.neuroimage.2013.03.053
[13] Descoteaux, M.; Deriche, R.; Knosche, T. R.; Anwander, A., “Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions,”, IEEE Transactions on Medical Imaging, 28, 269-286 (2009) · doi:10.1109/TMI.2008.2004424
[14] Desikan, R. S.; Ségonne, F.; Fischl, B.; Quinn, B. T.; Dickerson, B. C.; Blacker, D.; Buckner, R. L.; Dale, A. M.; Maguire, R. P.; Hyman, B. T.; Albert, M. S.; Killiany, R. J., “An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans Into Gyral Based Regions of Interest,”, NeuroImage, 31, 968-980 (2006) · doi:10.1016/j.neuroimage.2006.01.021
[15] Downs, T. D., “Orientation Statistics,”, Biometrika, 59, 665-676 (1972) · Zbl 0269.62027 · doi:10.1093/biomet/59.3.665
[16] Durante, D.; Dunson, D. B., “Bayesian Inference and Testing of Group Differences in Brain Networks,”, Bayesian Analysis, 13, 29-58 (2018) · Zbl 06873717 · doi:10.1214/16-BA1030
[17] Durante, D.; Dunson, D. B.; Vogelstein, J. T., “Nonparametric Bayes Modeling of Populations of Networks,”, Journal of the American Statistical Association, 112, 1516-1530 (2017) · doi:10.1080/01621459.2016.1219260
[18] Eden, A. S.; Schreiber, J.; Anwander, A.; Keuper, K.; Laeger, I.; Zwanzger, P.; Zwitserlood, P.; Kugel, H.; Dobel, C., “Emotion Regulation and Trait Anxiety Are Predicted by the Microstructure of Fibers Between Amygdala and Prefrontal Cortex,”, Journal of Neuroscience, 35, 6020-6027 (2015) · doi:10.1523/JNEUROSCI.3659-14.2015
[19] Fornito, A.; Zalesky, A.; Breakspear, M., “Graph Analysis of the Human Connectome: Promise, Progress, and Pitfalls,”, Neuroimage, 80, 426-444 (2013) · doi:10.1016/j.neuroimage.2013.04.087
[20] Garyfallidis, E.; Brett, M.; Amirbekian, B.; Rokem, A.; van der Walt, S.; Descoteaux, M.; Nimmo-Smith, I., “Dipy, a Library for the Analysis of Diffusion MRI Data,”, Frontiers in Neuroinformatics, 8, 8 (2014) · doi:10.3389/fninf.2014.00008
[21] Garyfallidis, E.; Ocegueda, O.; Wassermann, D.; Descoteaux, M., “Robust and Efficient Linear Registration of White-Matter Fascicles in the Space of Streamlines,”, NeuroImage, 117, 124-140 (2015) · doi:10.1016/j.neuroimage.2015.05.016
[22] Girard, G.; Whittingstall, K.; Deriche, R.; Descoteaux, M., “Towards Quantitative Connectivity Analysis: Reducing Tractography Biases,”, NeuroImage, 98, 266-278 (2014) · doi:10.1016/j.neuroimage.2014.04.074
[23] Glasser, M. F.; Coalson, T. S.; Robinson, E. C.; Hacker, C. D.; Harwell, J.; Yacoub, E.; Ugurbil, K.; Andersson, J.; Beckmann, C. F.; Jenkinson, M.; Smith, S. M.; Van Essen, D. C., “A Multi-modal Parcellation of Human Cerebral Cortex,”, Nature, 536, 171-178 (2016) · doi:10.1038/nature18933
[24] Gu, K.; Pati, D.; Dunson, D. B., “Bayesian Multiscale Modeling of Closed Curves in Point Clouds,”, Journal of the American Statistical Association, 109, 1481-1494 (2014) · Zbl 1368.62278 · doi:10.1080/01621459.2014.934825
[25] Hubert, L.; Arabie, P., “Comparing Partitions,”, Journal of Classification, 2, 193-218 (1985) · doi:10.1007/BF01908075
[26] Jasra, A.; Holmes, C. C.; Stephens, D. A., “Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling,”, Statistical Science, 20, 50-67 (2005) · Zbl 1100.62032 · doi:10.1214/088342305000000016
[27] Jbabdi, S.; Sotiropoulos, S. N.; Haber, S. N.; Van Essen, D. C.; Behrens, T. E., “Measuring Macroscopic Brain Connections In Vivo,”, Nature Neuroscience, 18, 1546-1555 (2015) · doi:10.1038/nn.4134
[28] Jupp, P. E.; Mardia, K. V., “Maximum Likelihood Estimators for the Matrix Von Mises-Fisher and Bingham Distributions,”, The Annals of Statistics, 7, 599-606 (1979) · Zbl 0406.62012 · doi:10.1214/aos/1176344681
[29] Khatri, C. G.; Mardia, K. V., “The Von Mises-Fisher Matrix Distribution in Orientation Statistics,”, Journal of the Royal Statistical Society, Series B, 39, 95-106 (1977) · Zbl 0356.62044 · doi:10.1111/j.2517-6161.1977.tb01610.x
[30] Kurtek, S.; Srivastava, A.; Klassen, E.; Ding, Z., “Statistical Modeling of Curves Using Shapes and Related Features,”, Journal of the American Statistical Association, 107, 1152-1165 (2012) · Zbl 1443.62389 · doi:10.1080/01621459.2012.699770
[31] Müller, H.-G, “Functional Modeling of Longitudinal Data,”, Longitudinal Data Analysis, 1, 223-252 (2008)
[32] O’Donnell, L. J.; Wells, W. M.; Golby, A. J.; Westin, C.-F, Unbiased Groupwise Registration of White Matter Tractography, International Conference on Medical Image Computing and Computer-Assisted Intervention, 123-130 (2012), Springer
[33] Park, H. J.; Friston, K., “Structural and Functional Brain Networks: From Connections to Cognition,”, Science, 342, 1238411 (2013) · doi:10.1126/science.1238411
[34] Qiu, Y.; Nordman, D. J.; Vardeman, S. B., “A Wrapped Trivariate Normal Distribution and Bayes Inference for 3D Rotations,”, Statistica Sinica, 24, 897-917 (2014) · Zbl 1285.62059
[35] Querbes, O.; Aubry, F.; Pariente, J.; Lotterie, J.-A.; Démonet, J.-F.; Duret, V.; Puel, M.; Berry, I.; Fort, J.-C.; Celsis, P.; , “Early Diagnosis of Alzheimer’s Disease Using Cortical Thickness: Impact of Cognitive Reserve,”, Brain, 132, 2036-2047 (2009)
[36] Ramsay, J. O., Functional Data Analysis (2006), New York: Wiley Online Library, New York
[37] Ramsay, J.; Silverman, B. W., Functional Data Analysis (2005), New York: Springer, New York · Zbl 1079.62006
[38] Rand, W. M., “Objective Criteria for the Evaluation of Clustering Methods,”, Journal of the American Statistical Association, 66, 846-850 (1971) · doi:10.1080/01621459.1971.10482356
[39] Rentmeesters, Q.; Absil, P.-A, “Algorithm Comparison for Karcher Mean Computation of Rotation Matrices and Diffusion Tensors,”, 2011 19th European IEEE Signal Processing Conference, 2229-2233 (2011)
[40] Rodríguez, A.; Dunson, D. B.; Gelfand, A. E., “The Nested Dirichlet Process,”, Journal of the American Statistical Association, 103, 1131-1154 (2008) · Zbl 1205.62062 · doi:10.1198/016214508000000553
[41] Rodríguez, A.; Dunson, D. B.; Gelfand, A. E., “Bayesian Nonparametric Functional Data Analysis Through Density Estimation,”, Biometrika, 96, 149-162 (2009) · Zbl 1163.62027
[42] Rousseau, J.; Mengersen, K., “Asymptotic Behaviour of the Posterior Distribution in Overfitted Mixture Models,”, Journal of the Royal Statistical Society, Series B, 73, 689-710 (2011) · Zbl 1228.62034
[43] Rushton, J. P.; Ankney, C. D., “Brain Size and Cognitive Ability: Correlations With Age, Sex, Social Class, and Race,”, Psychonomic Bulletin & Review, 3, 21-36 (1996) · doi:10.3758/BF03210739
[44] Sethuraman, J., “A Constructive Definition of Dirichlet Priors,”, Statistica Sinica, 4, 639-650 (1994) · Zbl 0823.62007
[45] Smith, R. E.; Tournier, J. D.; Calamante, F.; Connelly, A., “Anatomically-Constrained Tractography: Improved Diffusion MRI Streamlines Tractography Through Effective Use of Anatomical Information,”, Neuroimage, 62, 1924-1938 (2012) · doi:10.1016/j.neuroimage.2012.06.005
[46] Srivastava, A.; Klassen, E. P., Functional and Shape Data Analysis (2016), New York: Springer, New York · Zbl 1376.62003
[47] Srivastava, A.; Klassen, E.; Joshi, S.; Jermyn, I., “Shape Analysis of Elastic Curves in Euclidean Spaces,”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1415-1428 (2011) · doi:10.1109/TPAMI.2010.184
[48] Srivastava, A.; Wu, W.; Kurtek, S.; Klassen, E.; Marron, J., “Registration of Functional Data Using Fisher-Rao Metric,”, arXiv no. 1103.3817 (2011)
[49] Stephens, M., “Dealing With Label Switching in Mixture Models,”, Journal of the Royal Statistical Society, Series B, 62, 795-809 (2000) · Zbl 0957.62020 · doi:10.1111/1467-9868.00265
[50] Teh, Y. W.; Jordan, M. I.; Beal, M. J.; Blei, D. M., “Hierarchical Dirichlet Processes,”, Journal of the American Statistical Association, 101, 1566-1581 (2006) · Zbl 1171.62349 · doi:10.1198/016214506000000302
[51] Toro, R.; Perron, M.; Pike, B.; Richer, L.; Veillette, S.; Pausova, Z.; Paus, T., “Brain Size and Folding of the Human Cerebral Cortex,”, Cerebral Cortex, 18, 2352-2357 (2008) · doi:10.1093/cercor/bhm261
[52] Van Essen, D. C.; Smith, S. M.; Barch, D. M.; Behrens, T. E.; Yacoub, E.; Ugurbil, K.; , “The WU-Minn Human Connectome Project: An Overview,”, Neuroimage, 80, 62-79 (2013) · doi:10.1016/j.neuroimage.2013.05.041
[53] Van Essen, D. C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S. W.; Della Penna, S., “The Human Connectome Project: A Data Acquisition Perspective,”, Neuroimage, 62, 2222-2231 (2012) · doi:10.1016/j.neuroimage.2012.02.018
[54] Wang, J.-L.; Chiou, J.-M.; Mueller, H.-G, “Review of Functional Data Analysis,”, arXiv no, 1507, 05135 (2015)
[55] Yang, J.; Cox, D. D.; Lee, J. S.; Ren, P.; Choi, T., “Efficient Bayesian Hierarchical Functional Data Analysis With Basis Function Approximations Using Gaussian-Wishart Processes,”, Biometrics, 73, 1082-1091 (2017) · Zbl 1405.62059 · doi:10.1111/biom.12705
[56] Yang, J.; Zhu, H.; Choi, T.; Cox, D. D., “Smoothing and Mean-Covariance Estimation of Functional Data With a Bayesian Hierarchical Model,”, Bayesian Analysis, 11, 649-670 (2016) · Zbl 1357.62182
[57] Yao, F.; Müller, H.-G.; Wang, J.-L, “Functional Data Analysis for Sparse Longitudinal Data,”, Journal of the American Statistical Association, 100, 577-590 (2005) · Zbl 1117.62451 · doi:10.1198/016214504000001745
[58] Zhang, Z.; Allen, G.; Zhu, H.; Dunson, D., “Relationships Between Human Brain Structural Connectomes and Traits,”, bioRxiv no. (2018) · doi:10.1101/256933
[59] Zhang, Z.; Descoteaux, M.; Zhang, J.; Girard, G.; Chamberland, M.; Dunson, D.; Srivastava, A.; Zhu, H., “Mapping Population-Based Structural Connectomes,”, NeuroImage, 172, 130-145 (2018) · doi:10.1016/j.neuroimage.2017.12.064
[60] Zhang, Z.; Klassen, E.; Srivastava, A., “Phase-Amplitude Separation and Modeling of Spherical Trajectories,”, Journal of Computational and Graphical Statistics, 27, 85-97 (2018) · Zbl 07498969 · doi:10.1080/10618600.2017.1340892
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.